Article contents
Vector valued mean-periodic functions on groups
Published online by Cambridge University Press: 09 April 2009
Abstract
Let G be a locally compact Hausdorif abelian group and X be a complex Banach space. Let C(G, X) denote the space of all continuous functions f: G → X, with the topology of uniform convergence on compact sets. Let X′ denote the dual of X with the weak* topology. Let Mc(G, X′) denote the space of all X′-valued compactly supported regular measures of finite variation on G. For a function f ∈ C(G, X) and μ ∈ Mc(G, X′), we define the notion of convolution f * μ. A function f ∈ C(G, X) is called mean-periodic if there exists a non-trivial measure μ ∈ Mc(G, X′) such that f * μ = 0. For μ ∈ Mc(G, X′), let M P(μ) = {f ∈ C(G, X): f * μ = 0} and let M P(G, X) = ∪μ M P(μ). In this paper we analyse the following questions: Is M P(G, X) ≠ 0? Is M P(G, X) ≠ C(G, X)? Is M P(G, X) dense in C(G, X)? Is M P(μ) generated by ‘exponential monomials’ in it? We answer these questions for the groups G = ℝ, the real line, and G = T, the circle group. Problems of spectral analysis and spectral synthesis for C(ℝ, X) and C(T, X) are also analysed.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2002
References
- 5
- Cited by