Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T02:31:30.585Z Has data issue: false hasContentIssue false

WEAK PROPER DISTRIBUTION OF VALUES OF MULTIPLICATIVE FUNCTIONS IN RESIDUE CLASSES

Published online by Cambridge University Press:  04 February 2013

WŁADYSŁAW NARKIEWICZ*
Affiliation:
Institute of Mathematics, Wrocław University, Plac Grunwaldzki 2-4, PL-50-384 Wrocław, Poland email narkiew@math.uni.wroc.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a class of multiplicative integer-valued functions $f$ the distribution of the sequence $f(n)$ in restricted residue classes modulo $N$ is studied. We consider a property weaker than weak uniform distribution and study it for polynomial-like multiplicative functions, in particular for $\varphi (n)$ and $\sigma (n)$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc.

References

Delange, H., ‘Généralisation du théorème de Ikehara’, Ann. Sci. Éc. Norm. Supér. (3) 78 (1954), 213242.CrossRefGoogle Scholar
Dence, T. and Pomerance, C., ‘Euler’s function in residue classes’, Ramanujan J. 2 (1999), 720.CrossRefGoogle Scholar
Narkiewicz, W., ‘On distribution of values of multiplicative functions in residue classes’, Acta Arith. 12 (1967), 269279.CrossRefGoogle Scholar
Narkiewicz, W., ‘Distribution of coefficients of Eisenstein series in residue classes’, Acta Arith. 43 (1983), 8392.CrossRefGoogle Scholar
Narkiewicz, W., Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Mathematics, 1087 (Springer, Berlin–Heidelberg–New York–Tokyo, 1984).CrossRefGoogle Scholar
Narkiewicz, W. and Rayner, F., ‘Distribution of values of ${\sigma }_{2} (n)$ in residue classes’, Monatsh. Math. 94 (1982), 133141.CrossRefGoogle Scholar
Rayner, F., ‘Weak uniform distribution for divisor functions, Parts I and II’, Math. Comp. 50 (1988), 335342; 51 (1988), 331–337.CrossRefGoogle Scholar
Serre, J.-P., ‘Divisibilité de certains fonctions arithmétiques’, Enseign. Math. 22 (1976), 227260.Google Scholar
Śliwa, J., ‘On distribution of values of $\sigma (n)$ in residue classes’, Colloq. Math. 27 (1973), 283391; correction p. 332.CrossRefGoogle Scholar
Wilton, J. R., ‘Congruence properties of Ramanujan’s function $\tau (n)$’, Proc. Lond. Math. Soc. (2) 31 (1930), 110.CrossRefGoogle Scholar