Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T06:05:21.270Z Has data issue: false hasContentIssue false

The weighted g-Drazin inverse for operators

Published online by Cambridge University Press:  09 April 2009

J. J. Koliha
Affiliation:
Department of Mathematics and Statistics The University of MelbourneVIC 3010Australia e-mail: a.dajic@ms.unimelb.edu.au, j.koliha@ms.unimelb.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29 (1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Barnes, B. A., ‘Common operator properties of the linear operators RS and SR’, Proc. Amer. Math. Soc. 126 (1998), 10551061.Google Scholar
[2]Bonsall, F. F. and Duncan, J., Complete normed algebras (Springer, Berlin, 1973).Google Scholar
[3]Buoni, J. J. and Faires, J. D., ‘Ascent, descent, nullity and defect of products of operators’, Indiana Univ. Math. J. 25 (1976), 703707.Google Scholar
[4]Campbell, S. L. and Meyer, C. D., Generalized inverses of linear transformations (Pitman, London, 1979).Google Scholar
[5]Cline, R. E. and Greville, T. N. E., ‘A Drazin inverse for rectangular matrices’, Linear Algebra Appl. 29 (1980), 5362.Google Scholar
[6]González, N. Castro, Koliha, J. J. and Wei, Y., ‘On integral representation of the Drazin inverse in Banach algebras’, Proc. Edinburgh Math. Soc. 45 (2002), 327331.CrossRefGoogle Scholar
[7]Koliha, J. J., ‘A generalized Drazin inverse’, Glasgow Math. J. 38 (1996), 367381.Google Scholar
[8]Koliha, J. J., ‘Isolated spectral points’, Proc. Amer. Math. Soc. 124 (1996), 34173424.Google Scholar
[9]Koliha, J. J. and Rakočević, V., ‘Continuity of the Drazin inverse II’, Studia Math. 131 (1998), 167177.Google Scholar
[10]Koliha, J. J. and Poon, P. W., ‘Spectral sets II’, Rend. Circ. Mat. Palermo (2) 47 (1998), 293310.Google Scholar
[11]Mbekhta, M., ‘Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux’, Glasgow Math. J. 29 (1987), 159175.Google Scholar
[12]Qiao, S. Z., ‘The weighted Drazin inverse of a linear operator on a Banach space and its approximation’, Numer. Math. J. Chinese Univ. 3 (1981), 296305 (Chinese).Google Scholar
[13]Rakočević, V. and Wei, Y., ‘A weighted Drazin inverse and applications’, Linear Algebra Appl. 350 (2002), 2539.CrossRefGoogle Scholar
[14]Rakočević, V., ‘The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert spaces’, Appl. Math. Comput. 141 (2003), 455470.Google Scholar
[15]Schmoeger, Ch., ‘On isolated points of the spectrum of a bounded linear operator’, Proc. Amer. Math. Soc. 117 (1993), 715719.Google Scholar
[16]Wang, G. R., ‘Approximation methods for the W-weighted Drazin inverse of linear operators in Banach spaces’, Numer. Math. J. Chinese Univ. 10 (1988), 7481 (Chinese).Google Scholar
[17]Wang, G. R., ‘Iterative methods for computing the Drazin inverse and the W-weighted Drazin inverse of linear operators based on functional interpolation’, Numer. Math. J. Chinese Univ. 11 (1989), 269280.Google Scholar
[18]Wei, Y., ‘Integral representation of the W-weighted Drazin inverse’, Appl. Math. Comput. 144 (2003), 310.Google Scholar
[19]Yukhno, L. F., ‘An eigenvalue property of the product of two rectangular matrices’, Comput. Math. Math. Phys. 36 (1996), 555557.Google Scholar