Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T21:04:33.939Z Has data issue: false hasContentIssue false

Weighted p-Sidon sets

Published online by Cambridge University Press:  09 April 2009

K. E. Hare
Affiliation:
Department of Pure Mathematics University of WaterlooWaterloo OntarioCanadaN2L 3G1 e-mail: kehare@math.waterloo.edu
D. C. Wilson
Affiliation:
School of Applied Science Monash UniversityChurchill VIC 3842Australia e-mail: david.wilson@sci.monash.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A weighted generalization of a p-Sidon set, called an (a, p)-Sidon set, is introduced and studied for infinite, non-abelian, connected, compact groups G. The entire dual object Ĝ is shown never to be central (p − 1, p)-Sidon for 1 ≦ p < 2, nor central (1 + ε, 2)-Sidon for ε > 0. Local (p, p)-Sidon sets are shown to be identical to local Sidon sets. Examples are constructed of infinite non-Sidon sets which are central (2p − 1, p)-Sidon, or (p − 1, p)-Sidon, for 1 < p < 2. Full m-fold FTR sets are proved not to be central (a, 2m/(m + 1))-Sidon for any a > 1.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Blei, R., ‘Fractional Cartesian products’, Ann. Inst. Fourier (Grenoble) 29 (1979), 79105.CrossRefGoogle Scholar
[2]Blei, R., Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (Amer. Math. Soc., Providence, 1985).CrossRefGoogle Scholar
[3]Cartwright, D. I. and McMullen, J. R., ‘A structural criterion for the existence of infinite Sidon sets’, Pacific J. Math. 96 (1981), 301317.CrossRefGoogle Scholar
[4]Dooley, A. H., ‘On lacunary sets for nonabelian groups’, J. Austral. Math. Soc. (Series A) 25 (1978), 167176.CrossRefGoogle Scholar
[5]Dooley, A. H., ‘Norms of characters and lacunarity for compact Lie groups’, J. Funct. Anal. 32 (1979), 254267.CrossRefGoogle Scholar
[6]Dooley, A. H., ‘Random Fourier series for central functions on compact Lie groups’, Illinois J. Math. 24 (1980), 545553.CrossRefGoogle Scholar
[7]Dooley, A. H., ‘Central lacunary sets for Lie groups’, J. Austral. Math. Soc. (Series A) 45 (1988), 3045.CrossRefGoogle Scholar
[8]Dooley, A. H. and Soardi, P. M., ‘Local p-Sidon sets for Lie groups’, Proc. Amer. Math. Soc. 72 (1978), 125126.Google Scholar
[9]Edwards, R. E. and Ross, K. A., ‘p-Sidon sets’, J. Funct. Anal. 15 (1974), 404427.CrossRefGoogle Scholar
[10]Hare, K. E. and Wilson, D. C., ‘A structural criterion for the existence of infinite central Λ(p) sets’, Trans. Amer. Math. Soc. 337 (1993), 907925.Google Scholar
[11]Hewitt, E. and Ross, K. A., Abstract harmonic analysis II (Springer, Berlin, 1970).Google Scholar
[12]Humphreys, J. E., Introduction to Lie algebras and representation theory (Springer, Berlin, 1972).CrossRefGoogle Scholar
[13]Hutchinson, M. F., ‘Non-tall compact groups admit infinite Sidon sets’, J. Austral. Math. Soc. (Series A) 23 (1977), 467475.CrossRefGoogle Scholar
[14]Johnson, G. W. and Woodward, G. S., ‘On p-Sidon sets’, Indiana Univ. Math. J. 24 (1974), 161167.CrossRefGoogle Scholar
[15]Price, J. F., Lie groups and compact groups, London Math. Soc. Lecture Note Ser. 25 (Cambridge Univ. Press, Cambridge, 1977).CrossRefGoogle Scholar
[16]Rider, D., ‘Central lacunary sets’, Monatsh. Math. 76 (1972), 328338.CrossRefGoogle Scholar
[17]Saunders, J. W., ‘Weighted Sidon sets’, Pacific J. Math. 63 (1976), 255279.CrossRefGoogle Scholar
[18]Tits, J., Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Math. 40 (Springer, Berlin, 1967).CrossRefGoogle Scholar
[19]Wilson, D. C., ‘A general criterion for the existence of infinite Sidon sets’, J. Austral. Math. Soc. (Series A) 45 (1988), 1129.CrossRefGoogle Scholar
[20]Želobenko, D. P., Compact Lie groups and their representations, Trans. Math. Monographs 40 (Amer. Math. Soc., Providence, 1973).CrossRefGoogle Scholar
[21]Zhu, K., Operator theory in function spaces (Marcel Dekker, New York, 1990).Google Scholar