Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T02:14:39.124Z Has data issue: false hasContentIssue false

Witt's Theorem for Symplectic Modular Forms1

Published online by Cambridge University Press:  09 April 2009

D. G. James
Affiliation:
The Pennsylvania State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L denote a free Z-module of rank 2n and Φ an alternating bilinear mapping from L×L into the rational integers Z. Writing α · β for Φ(α, β), where α, β ∈ L, we have We shall assume that Φ is non-singular and unimodular (see Bourbaki [1]). L is now a (symplectic) lattice.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1969

References

[1]Bourbaki, , Algèbre ch. 9, (Hermann, Paris, 1959).Google Scholar
[2]Dieudonné, J., La géométrie des groupes classiques, (Springer-Verlag, Berlin, 1963).CrossRefGoogle Scholar
[3]James, D. G., ‘Integral invariants for vectors over local fields’, Pac. J. Math. 15 (1965), 905916.CrossRefGoogle Scholar
[4]James, D. G., ‘Transitivity in integral symplectic forms’, J. Aust. Math. Soc. 8 (1968), 4348.CrossRefGoogle Scholar
[5]O'Meara, O. T., ‘Quadratic forms over local fields’, Amer. J. Math. 77 (1955), 87116.CrossRefGoogle Scholar
[6]Witt, E., ‘Theorie der quadratischen Formen in beliebigen Körpern’, J. reine angew. Math. 176 (1937), 3144.CrossRefGoogle Scholar