Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:41:15.715Z Has data issue: false hasContentIssue false

ZERO JORDAN PRODUCT DETERMINED BANACH ALGEBRAS

Published online by Cambridge University Press:  08 January 2020

J. ALAMINOS
Affiliation:
Departamento de Análisis, Matemático, Facultad de Ciencias, Universidad de Granada, 18071Granada, Spain e-mail: alaminos@ugr.es
M. BREŠAR
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000Ljubljana, Slovenia Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000Maribor, Slovenia e-mail: matej.bresar@fmf.uni-lj.si
J. EXTREMERA
Affiliation:
Departamento de Análisis, Matemático, Facultad de Ciencias, Universidad de Granada, 18071Granada, Spain e-mail: jlizana@ugr.es
A. R. VILLENA
Affiliation:
Departamento de Análisis, Matemático, Facultad de Ciencias, Universidad de Granada, 18071Granada, Spain e-mail: avillena@ugr.es

Abstract

A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if, for every Banach space $X$, every bilinear map $\unicode[STIX]{x1D711}:A\times A\rightarrow X$ satisfying $\unicode[STIX]{x1D711}(a,b)=0$ whenever $a$, $b\in A$ are such that $ab+ba=0$, is of the form $\unicode[STIX]{x1D711}(a,b)=\unicode[STIX]{x1D70E}(ab+ba)$ for some continuous linear map $\unicode[STIX]{x1D70E}$. We show that all $C^{\ast }$-algebras and all group algebras $L^{1}(G)$ of amenable locally compact groups have this property and also discuss some applications.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by A. Sims

The authors were supported by MINECO grant PGC2018-093794-B-I00. The first, the third and the fourth named authors were supported by Junta de Andalucía grant FQM-185. The second named author was supported by ARRS grant P1-0288.

References

Alaminos, J., Brešar, M., Extremera, J., Špenko, Š. and Villena, A. R., ‘Commutators and square-zero elements in Banach algebras’, Q. J. Math. 67 (2016), 113.Google Scholar
Alaminos, J., Brešar, M., Extremera, J. and Villena, A. R., ‘Maps preserving zero products’, Studia Math. 193 (2009), 131159.Google Scholar
Alaminos, J., Brešar, M., Extremera, J. and Villena, A. R., ‘Zero Lie product determined Banach algebras’, Studia Math. 239 (2017), 189199.Google Scholar
Alaminos, J., Brešar, M., Extremera, J. and Villena, A. R., ‘Zero Lie product determined Banach algebras, II’, J. Math. Anal. Appl. 474 (2019), 14981511.Google Scholar
An, G., Li, J. and He, J., ‘Zero Jordan product determined algebras’, Linear Algebra Appl. 475 (2015), 9093.Google Scholar
Brešar, M., Introduction to Noncommutative Algebra, Universitext (Springer, Cham, 2014).Google Scholar
Brešar, M., ‘Finite dimensional zero product determined algebras are generated by idempotents’, Expo. Math. 34 (2016), 130143.Google Scholar
Brešar, M., Grašič, M. and Sanchez, J., ‘Zero product determined matrix algebras’, Linear Algebra Appl. 430 (2009), 14861498.Google Scholar
Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs New Series, 24 (Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000).Google Scholar
Johnson, B. E., ‘Symmetric amenability and the nonexistence of Lie and Jordan derivations’, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455473.Google Scholar
Read, C. J., ‘Discontinuous derivations on the algebra of bounded operators on a Banach space’, J. Lond. Math. Soc. (2) 40 (1989), 305326.Google Scholar