Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T05:36:33.046Z Has data issue: false hasContentIssue false

The zeros of linear combinations of translates of polynomials

Published online by Cambridge University Press:  09 April 2009

Peter Walker
Affiliation:
College of Arts and Science, American University of Sharjah, P.O. 26666 Sharjah, United Arab Emirates e-mail: peterw@aus.ac.ae
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the location and separation of zeros of certain three-term linear combination of translates of polynomials. In particular, we find an interval of the form I = [−1, 1 + h], h > 0 such that for a polynomial f, all of whose zeros are real, and λ ∈ I, all zeros of f (x + 2ic) + 2λf (x) + f (x – 2ic) are also real.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Pólya, G., ‘Algebraische Untersuchungen über ganze Funktionen vom Geschlechte Null und Eins’, J. Reine Angew. Math. 145 (1915), 224249.CrossRefGoogle Scholar
[2]Pólya, G., ‘Bemerkung über die Integraldarstellung der Riemannsche -Function’, Acta Math. 48 (1926), 305317.CrossRefGoogle Scholar
[3]Walker, P. L., ‘Separation of the zeros of polynomials’, Amer. Math. Monthly 100 (1993), 272273.Google Scholar
[4]Walker, P. L., ‘Bounds for the separation of real zeros of polynomials’, J. Austral. Math. Soc. (Series A) 59 (1995), 330342.CrossRefGoogle Scholar
[5]Walker, P. L., ‘Separation of zeros of translates of polynomials and entire functions’, J. Math. Anal. Appl. 206 (1997), 270279.CrossRefGoogle Scholar