Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T16:09:03.604Z Has data issue: false hasContentIssue false

Elementary generalizations upon Lidstone's approximation for two joint lives

Published online by Cambridge University Press:  18 August 2016

Extract

Lidstone's formula for approximating to the premium for a joint-life endowment assurance is

It has been found empirically that the greater the disparity in age the less accurate is the approximation. There is no such progressive loss of accuracy as the period of assurance lengthens.

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Lidstone, G. J. On a method of approximately calculating net premiums for endowment assurances on two joint Lives. J.I.A. Vol. XXXIII, p. 354 [1899].Google Scholar
(2) Jecklin, H. Näherungswerte für die gernischte Versicherung mehrerer verbundener Leben. Mitteilungen Vereinigung schweiz. Vers. Math. Vol. XLVI, No. I [1946].Google Scholar
(3) Jacob, M. Approximationsmethoden in der Versicherungsmathematik. Ungarische Rundschau Versicherungswissenschaft, Vol. VII [1937].Google Scholar
Jecklin, H. See (2).Google Scholar
(4) Jensen, V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, Vol. xxx [1905].Google Scholar
Jecklin, H. Quasi-arithmetische Mittelwerte. Elemente der Mathematik, Vol. IV, No. 5 [1949].Google Scholar
(5) Meyer, E. Näherungsmethoden für Versicherungen verbundener Leben. Neumanns Zeitschrift Versicherungswesen, Vol. VII [1928].Google Scholar
Zwinggi, E. Ein Multiplikationssatz für das Deckungskapital. Mitteilungen Vereinigung schweiz. Vers. Math. Vol. XLV, No. 2 [1945].Google Scholar
(6) Zwinggi, E. See (5).Google Scholar
(7) Cantelli, F. P. Genesi e costruzione delle tavole di mutualità. Bollettino di Notizie sul Credito e sulla Previdenza [1914].Google Scholar
Zwinggi, E. Versicherungsmathematik, pp. 3940 [Basle, 1945].Google Scholar
(8) Jacob, M. Su alcuni metodi di approssimazione per il calcolo delle variazioni del premio e delle riserve matematiche col variare del saggio d'interesse. Eleventh Int. Congr. Actuaries, Vol. I [Paris, 1937].Google Scholar
Jecklin, H. On Lidstone's approximate Premium Formula for endowment assurances on two joint lives. Proceedings Inst. Actuaries Cent. Assembly, Vol. II, p. 174 [1948].Google Scholar
(9) Jacob, M. Sui metodi di approssimazione per il calcolo dei premi nelle assicurazioni d'invalidità. Tenth Int. Congr. Actuaries, Vol. I [Roma, 1934].Google Scholar
Jecklin, H. See (8).Google Scholar
(10) Jacob, M. Zur Theorie der Versicherung minderwertiger Leben. Assekuranz-Jahrbuch, Vol. LV [1936].Google Scholar
Jecklin, H. Eine Näherungsformel für Uebersterblichkeitszuschläge. Mitteilungen Vereinigung schweiz. Vers. Math. Vol. XLIV, No. I [1944].Google Scholar
(11) Jecklin, H. Algebraische Begründung einer Klasse versicherungstechnischer Approximationen. Mitteilungen Vereinigung schweiz. Vers. Math. Vol. L, P. 133 [1950].Google Scholar