Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:38:55.284Z Has data issue: false hasContentIssue false

NON-ABELIAN UNIPOTENT PERIODS AND MONODROMY OF ITERATED INTEGRALS

Published online by Cambridge University Press:  27 January 2003

Zdzisław Wojtkowiak
Affiliation:
Université de Nice-Sophia Antipolis, Département de Mathématiques, Laboratoire Jean Alexandre Dieudonné, URA au CNRS, No. 168, Parc Valrose—BPNo 71, 06108 Nice Cedex 2, France

Abstract

In this note we are studying the Lie algebras associated to non-abelian unipotent periods on $P^1_{\mathbb{Q}(\mu_n)}\setminus\{0,\mu_n,\infty\}$. Let $n$ be a prime number. We assume that for any $m\geq 1$ the numbers $Li_{m+1}(\xi_n^k)$ for $1\leq k\leq (n-1)/2$ are linearly independent over $\mathbb{Q}$ in $\mathbb{C}/(2\pi\ri)^{m+1}\mathbb{Q}$. Let $S=\{k_1,\cdots,k_q\}$ be a subset of $\{1,\dots,p-1\}$ such that if $k\in S$, then $p-k\in S$ and $(S+S)\cap S=\emptyset$ (the sum of two elements of $S$ is calculated $\mathrm{Mod}p$). Then we show that in the Lie algebra associated to non-abelian unipotent periods on $P^1_{\mathbb{Q}(\mu_n)}\setminus \{0,\mu_n,\infty\}$ there are derivations $D^{k_1}_{m+1},\dots,D^{k_q}_{m+1}$ in each degree $m+1$ and these derivations are free generators of a free Lie subalgebra of this Lie algebra.

AMS 2000 Mathematics subject classification: Primary 11G55

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)