Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:52:20.634Z Has data issue: false hasContentIssue false

ON THE MOTIVIC SPECTRAL SEQUENCE

Published online by Cambridge University Press:  25 November 2015

Grigory Garkusha
Affiliation:
Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK (g.garkusha@swansea.ac.uk)URL: http://math.swansea.ac.uk/staff/gg/
Ivan Panin
Affiliation:
St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia St. Petersburg State University, Department of Mathematics and Mechanics, Universitetsky prospekt, 28, 198504, Peterhof, St. Petersburg, Russia (paniniv@gmail.com)

Abstract

It is shown that the Grayson tower for $K$-theory of smooth algebraic varieties is isomorphic to the slice tower of $S^{1}$-spectra. We also extend the Grayson tower to bispectra, and show that the Grayson motivic spectral sequence is isomorphic to the motivic spectral sequence produced by the Voevodsky slice tower for the motivic $K$-theory spectrum $\mathit{KGL}$. This solves Suslin’s problem about these two spectral sequences in the affirmative.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A., Letter to Christophe Soulé, 1982, K-theory Preprint archives 694.Google Scholar
Bloch, S. and Lichtenbaum, S., A spectral sequence for motivic cohomology, 1995, K-theory Preprint archives 62.Google Scholar
Dundas, B. I., Levine, M., Østvær, P. A., Röndigs, O. and Voevodsky, V., Motivic Homotopy Theory, Universitext (Springer-Verlag, Berlin, 2007).CrossRefGoogle Scholar
Friedlander, E. M. and Suslin, A., The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 773875.Google Scholar
Garkusha, G. and Panin, I., K-motives of algebraic varieties, Homology, Homotopy Appl. (2) 14 (2012), 211264.Google Scholar
Garkusha, G. and Panin, I., The triangulated category of K-motives DK - eff (k), J. K-Theory (1) 14 (2014), 103137.Google Scholar
Grayson, D., Higher algebraic K-theory II [after Daniel Quillen], in Algebraic K-theory, Evanston 1976, Lecture Notes in Mathematics, Volume 551, pp. 217240 (Springer-Verlag, Berlin, Heidelberg, New York, 1976).Google Scholar
Grayson, D., Adams operations on higher K-theory, K-Theory 6 (1992), 97111.Google Scholar
Grayson, D., Weight filtrations via commuting automorphisms, K-Theory 9 (1995), 139172.CrossRefGoogle Scholar
Hovey, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra (1) 165 (2001), 63127.Google Scholar
Hovey, M., Shipley, B. and Smith, J., Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149208.Google Scholar
Jardine, J. F., Motivic symmetric spectra, Doc. Math. 5 (2000), 445552.Google Scholar
Kahn, B. and Levine, M., Motives of Azumaya algebras, J. Inst. Math. Jussieu (3) 9 (2010), 481599.Google Scholar
Levine, M., Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. (2) 10 (2001), 299363.Google Scholar
Levine, M., The homotopy coniveau filtration, J. Topol. 1 (2008), 217267.Google Scholar
Levine, M., The slice filtration and Grothendieck–Witt groups, Pure Appl. Math. Q. (4) 7 (2011), 15431584.Google Scholar
Morel, F., The stable A1 -connectivity theorems, K-theory 35 (2006), 168.CrossRefGoogle Scholar
Morel, F. and Voevodsky, V., A1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45143.Google Scholar
Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. (1) 9 (1996), 205236.Google Scholar
Panin, I., Pimenov, K. and Röndigs, O., On Voevodsky’s algebraic K-theory spectrum BGL , Abel. Symp. Proc. 4 (2009), 279330.Google Scholar
Podkopaev, O., The equivalence of Grayson and Friedlander–Suslin spectral sequences, Preprint, 2013, arXiv:1309.7597.Google Scholar
Riou, J., Catégorie homotopique stable d’un site suspendu avec intervalle, Bull. Soc. Math. France 135 (2007), 495547.Google Scholar
Riou, J., Algebraic K-theory, A1 -homotopy and Riemann–Roch theorems, J. Topol. 3 (2010), 229264.Google Scholar
Rognes, J., Introduction to Higher Algebraic K-theory, Lecture Notes 2010, available at folk.uio.no/rognes/kurs/mat9570v10/akt.pdf.Google Scholar
Schwede, S., An untitled book project about symmetric spectra, available at www.math.uni-bonn.de/∼schwede (version v3.0/April 2012).Google Scholar
Suslin, A., On the Grayson spectral sequence, Tr. Mat. Inst. Steklova 241 (2003), 218253. (Russian). English transl. in Proc. Steklov Inst. Math. (2) 241 (2003), 202–237.Google Scholar
Suslin, A. and Voevodsky, V., Bloch–Kato conjecture and motivic cohomology with finite coefficients, in The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Science Series C: Mathematics, Physics and Science, Volume 548, pp. 117189 (Kluwer Academic Publishers, Dordrecht, 2000).Google Scholar
Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift III, Progress in Mathematics, Volume 88, pp. 247435 (Birkhäuser, Boston, 1990).Google Scholar
Voevodsky, V., A1 -Homotopy theory, Doc. Math. ICM(1) (1998), 417442.Google Scholar
Voevodsky, V., Open problems in the motivic stable homotopy theory. I, in Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), International Press Lecture Series, Volume 3, pp. 334 (International Press, Somerville, MA, 2002).Google Scholar
Voevodsky, V., A possible new approach to the motivic spectral sequence for algebraic K-theory, in Recent Progress in Homotopy Theory (Baltimore, MD, 2000), Contemporary Mathematics, Volume 293, pp. 371379 (American Mathematical Society, Providence, RI, 2002).Google Scholar
Voevodsky, V., Cancellation theorem, Doc. Math. Extra Volume in honor of A. Suslin (2010), 671–685.Google Scholar
Waldhausen, F., Algebraic K-theory of spaces, in Algebraic and Geometric Topology, Proceedings Conference, New Brunswick/USA 1983, Lecture Notes in Mathematics, Volume 1126, pp. 318419 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).Google Scholar
Walker, M. E., Motivic cohomology and the K-theory of automorphisms, PhD thesis, University of Illinois at Urbana-Champaign, 1996.Google Scholar