Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T04:42:32.933Z Has data issue: false hasContentIssue false

QUANTUM ERGODICITY FOR COMPACT QUOTIENTS OF $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$ IN THE BENJAMINI–SCHRAMM LIMIT

Published online by Cambridge University Press:  13 December 2021

Farrell Brumley
Affiliation:
Université Sorbonne Paris Nord, Laga – Institut Galilée, 99 Avenue Jean Baptiste Clément, Villetaneuse 93430, France (brumley@math.univ-paris13.fr)
Jasmin Matz*
Affiliation:
Department of Mathematical Science, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark

Abstract

We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J. and Samet, I., On the growth of ${L}^2$ -invariants for sequences of lattices in Lie groups, Ann. of Math. (2) 185(3) (2017), 711790.10.4007/annals.2017.185.3.1CrossRefGoogle Scholar
Abert, M., Bergeron, N. and Le Masson, E., ‘Eigenfunctions and random waves in the Benjamini–Schramm limit’, Preprint, (2018), https://arxiv.org/abs/1810.05601.Google Scholar
Arantharaman, N. and Le Masson, E., Quantum ergodicity on large regular graphs, Duke Math. J. 164(4) (2015), 723765.Google Scholar
Bekka, M. B. and Mayer, M., Ergodic theory and topological dynamics of group actions on homogeneous spaces . London Math. Soc. Lecture Note Series 269, pp. x–200 (Cambridge University Press, Cambridge, 2000).Google Scholar
Benjamini, I. and Schramm, O., Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001), 113.10.1214/EJP.v6-96CrossRefGoogle Scholar
Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups , Annals of Mathematics Studies, 94 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Brion, M. and Vergne, M., Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797833.10.1090/S0894-0347-97-00242-7CrossRefGoogle Scholar
Brooks, S., Le Masson, E. and Lindenstrauss, E., Quantum ergodicity and averaging operators on the sphere, Int. Math. Res. Not. IMRN 19 (2016), 60346064.CrossRefGoogle Scholar
Brumley, F. and Marshall, S., Lower bounds for Maass forms on semisimple groups, Compos. Math. 165(5) (2020), 9591003.10.1112/S0010437X20007125CrossRefGoogle Scholar
Colin de Verdière, Y., Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102(3) (1985), 497502.10.1007/BF01209296CrossRefGoogle Scholar
Cowling, M., Sur les coefficients des représentations unitaires des groupes de Lie simples, in Analyse Harmonique sur les groupes de Lie II, Lecture Notes in Mathematics, 739, pp. 132178 (Springer, Berlin, 1979).10.1007/BFb0062491CrossRefGoogle Scholar
Duistermaat, J. J., Kolk, J. A. C. and Varadarajan, V. S., Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math. 52(1) (1979), 2793.10.1007/BF01389856CrossRefGoogle Scholar
Gangolli, R., On the Plancherel formula and the Paley–Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math (2) 93 (1971), 150165.CrossRefGoogle Scholar
Gangolli, R. and Varadarajan, V. S., Harmonic analysis of spherical functions on real reductive groups , Ergebnisse der Mathematik und ihrer Grenzgebiete, 101, pp. xiv–365 (Springer, Verlag, Berlin, 1988).CrossRefGoogle Scholar
Gorodnik, A. and Nevo, A., Quantitative ergodic theorems and their number theoretic applications, Bull. Amer. Math. Soc. (N.S.) 52(1) (2015), 65113.10.1090/S0273-0979-2014-01462-4CrossRefGoogle Scholar
Harish-Chandra, , Spherical functions on semisimple Lie groups I, Amer. J. Math. 79 (1958), 241310.10.2307/2372786CrossRefGoogle Scholar
Helgason, S., Groups and Geometric Analysis , Mathematical Surveys and Monographs, 83 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Howe, R. E. and Moore, C. C., Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), 7296.10.1016/0022-1236(79)90078-8CrossRefGoogle Scholar
Jorgenson, J. and Lang, S., Spherical Inversion on ${SL}_n\left(\mathbb{R}\right)$ , Springer Monographs in Mathematics (Springer-Verlag, New York, 2001).Google Scholar
Kazhdan, D., On the connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1(1) (1967), 6365.CrossRefGoogle Scholar
Knieper, G., On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal. 7(4) (1997), 755782.10.1007/s000390050025CrossRefGoogle Scholar
Lapid, E. and Müller, W., Spectral asymptotics for arithmetic quotients of ${SL}_n\left(\mathbb{R}\right)/\mathsf{SO}(n)$ , Duke. Math. J. 149(1) (2009), 117155.10.1215/00127094-2009-037CrossRefGoogle Scholar
Le Masson, E., Pseudo-differential calculus on homogeneous trees, Ann. Henri Poincaré 15(9) (2014), 16971732.10.1007/s00023-013-0284-2CrossRefGoogle Scholar
Le Masson, E. and Sahlsten, T., Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces, Duke Math. J. 166(18) (2017), 34253460.10.1215/00127094-2017-0027CrossRefGoogle Scholar
Lindenstrauss, E., On quantum unique ergodicity for $\varGamma \setminus \mathcal{H}\times \mathcal{H}$ , Int. Math. Res. Not. IMRN 17 (2001), 913933.10.1155/S1073792801000459CrossRefGoogle Scholar
Lindenstrauss, E., Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163(1) (2006), 165219.10.4007/annals.2006.163.165CrossRefGoogle Scholar
Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups , Ergebnisse der Mathematik und ihrer Grenzgebiete, 17 (Springer-Verlag, Berlin, 1991).Google Scholar
Nelson, P. and Venkatesh, A., The orbit method and analysis of automorphic forms, Acta Math. 226(1) (2021), 1209.10.4310/ACTA.2021.v226.n1.a1CrossRefGoogle Scholar
Nevo, A., Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett. 5(3) (1998), 305325.10.4310/MRL.1998.v5.n3.a5CrossRefGoogle Scholar
Silberman, L. and Venkatesh, A., On quantum unique ergodicity for locally symmetric spaces, Geom. Funct. Anal. 17 (2007), 960998.10.1007/s00039-007-0611-1CrossRefGoogle Scholar
Silberman, L. and Venkatesh, A., Entropy bounds for Hecke eigenfunctions on division algebras, in Probabilistic Methods in Geometry, Topology and Spectral Theory, Contemporary Mathematics, 739, pp. 171197 (Centre de Recherches Mathématique Proceedings, American Math Soc., Providence, RI, 2019).10.1090/conm/739/14899CrossRefGoogle Scholar
Šnirelman, A., Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk 6(180) (1974), 181182.Google Scholar
Shem–Tov, Z., Positive entropy using Hecke operators at a single place, Int. Math. Res. Not. IMRN (2020), https://doi.org/10.1093/imrn/rnaa235.Google Scholar
Trombi, P. C. and Varadarajan, V. S., Spherical transforms on semisimple Lie groups, Ann. of Math. 94 (1971), 246303.10.2307/1970861CrossRefGoogle Scholar
Zelditch, S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55(4) (1987), 919941.10.1215/S0012-7094-87-05546-3CrossRefGoogle Scholar
Zelditch, S., Quantum ergodicity and mixing of eigenfunctions, in Encyclopedia of Mathematical Physics (Academic Press/Elsevier Science, Oxford, UK, 2006).Google Scholar