Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T09:42:27.332Z Has data issue: false hasContentIssue false

ZERO-LOCI OF BRAUER GROUP ELEMENTS ON SEMI-SIMPLE ALGEBRAIC GROUPS

Published online by Cambridge University Press:  29 November 2018

Daniel Loughran
Affiliation:
University of Manchester, School of Mathematics, Oxford Road, Manchester, M13 9PL, UK (daniel.loughran@manchester.ac.uk)
Ramin Takloo-Bighash
Affiliation:
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S Morgan St (M/C 249), Chicago, IL 60202, USA (rtakloo@math.uic.edu)
Sho Tanimoto
Affiliation:
Department of Mathematics, Faculty of Science, Kumamoto University, Kurokami 2-39-1 Kumamoto 860-8555, Japan (stanimoto@kumamoto-u.ac.jp)

Abstract

We consider the problem of counting the number of rational points of bounded height in the zero-loci of Brauer group elements on semi-simple algebraic groups over number fields. We obtain asymptotic formulae for the counting problem for wonderful compactifications using the spectral theory of automorphic forms. Applications include asymptotic formulae for the number of matrices over $\mathbb{Q}$ whose determinant is a sum of two squares. These results provide a positive answer to some cases of a question of Serre concerning such counting problems.

Type
Research Article
Copyright
© Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, J., A trace formula for reductive groups I. Terms associated to classes in G (ℚ), Duke Math. J. 45 (1978), 911952.Google Scholar
Arthur, J., Eisenstein series and the trace formula, in Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore. 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pp. 253274 (American Mathematical Society, Providence, RI, 1979).Google Scholar
Batyrev, V. V. and Manin, Y. I., Sur le nombre des points rationnels de hauteur bornée des variétés algébriques, Math. Ann. 286 (1990), 2743.Google Scholar
Bloch, S. and Ogus, A., Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér. (4) 7 (1975), 181201.Google Scholar
Brion, M., The total coordinate ring of a wonderful variety, J. Algebra 313(1) (2007), 6199.Google Scholar
Chambert-Loir, A. and Tschinkel, Y., Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math. 2(3) (2010), 351429.Google Scholar
Colliot-Thélène, J.-L., Birational invariants, purity and the Gersten conjecture, in K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Proceedings of Symposia in Pure Mathematics, Volume 58, Part I, pp. 164 (AMS Summer Research Institute, Santa Barbara, 1995).Google Scholar
De Concini, C. and Procesi, C., Complete symmetric varieties, in Invariant Theory (Montecatini, 1982), Lecture Notes in Mathematics, Volume 996, pp. 144 (Springer, Berlin, 1983).Google Scholar
Delange, H., Généralisation du théorème de Ikehara, Ann. Sci. Éc. Norm. Supér. 71(3) (1954), 213242.Google Scholar
Evens, S. and Jones, B. F., On the wonderful compactification, Preprint, 2008, arXiv:0801.0456; Lecture Notes based on Lectures given at HKUST and Notre Dame.Google Scholar
Flath, D., Decomposition of representations into tensor products, in Automorphic Forms, Representations and L-functions, Proceedings of Symposia in Pure Mathematics, Volume 33, Part 1, pp. 179183 (1979).Google Scholar
Hassett, B., Tanimoto, S. and Tschinkel, Y., Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not. IMRN 15 (2015), 63756410.Google Scholar
Hooley, C., On ternary quadratic forms that represent zero, Glasg. Math. J. 35(1) (1993), 1323.Google Scholar
Hooley, C., On ternary quadratic forms that represent zero. II, J. reine angew. Math. 602 (2007), 179225.Google Scholar
Iversen, B., Brauer group of a linear algebraic group, J. Algebra 42 (1976), 295301.Google Scholar
Jacquet, H. and Langlands, R. P., Automorphic Forms on GL (2), Lecture Notes in Mathematics, Volume 114 (Springer, Berlin-New York, 1970).Google Scholar
Landau, E., Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. der Math. und Physik (3) 13 (1908), 305312.Google Scholar
Langlands, R. P., Eisenstein series, in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., pp. 235252 (American Mathematical Society, Boulder, CO, 1965).Google Scholar
Langlands, R. P., On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Mathematics, Volume 544 (Springer, Berlin–New York, 1976).Google Scholar
Loughran, D., The number of varieties in a family which contain a rational point, J. Eur. Math. Soc (JEMS) 20(10) (2018), 25392588.Google Scholar
Loughran, D. and Smeets, A., Fibrations with few rational points, Geom. Funct. Anal. 26(5) (2016), 14491482.Google Scholar
Gorodnik, A., Maucourant, F. and Oh, H., Manin’s conjecture on rational points of bounded height and adelic mixing, Ann. Sci. Éc. Norm. Supér. 41 (2008), 4797.Google Scholar
Kausz, I., A modular compactification of the general linear group, Doc. Math. 5 (2000), 553594.Google Scholar
Malle, G. and Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, Volume 133 (Cambridge University Press, Cambridge, 2011).Google Scholar
Milne, J. S., Étale Cohomology, Princeton Mathematical Series, Volume 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Moeglin, C. and Waldspurger, J.-L., Spectral Decomposition and Eisenstein Series. Une Paraphrase de l’Écriture, Cambridge Tracts in Mathematics, Volume 113 (Cambridge University Press, Cambridge, 1995).Google Scholar
Müller, W., The trace class conjecture in the theory of automorphic Forms. II, Geom. Funct. Anal. (GAFA) 8(2) (1998), 315355.Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, 2nd edn, Grundlehren der Mathematischen Wissenschafte, Volume 323 (Springer, Berlin, 2008).Google Scholar
Oh, H., Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), 133192.Google Scholar
Ono, T., On the relative theory of Tamagawa numbers, Ann. of Math. (2) 82 (1965), 88111.Google Scholar
Peyre, E., Hauteurs et mesures de Tamagawa sur les variétiés de Fano, Duke Math. J. 79(1) (1995), 101218.Google Scholar
Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, Volume 139 (Academic Press, Boston, MA, 1994).Google Scholar
Poonen, B., Rational points on varieties, Grad. Stud. Math. 186 (2017), xv+377.Google Scholar
Sansuc, J.-J., Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 1280.Google Scholar
Serre, J.-P., Spécialisation des éléments de Br 2(ℚ(T 1, …, T n)), C. R. Acad. Sci. Paris Sér. I Math. 311(7) (1990), 397402.Google Scholar
Shalika, J., Takloo-Bighash, R. and Tschinkel, Y., Rational points on compactifications of semi-simple groups of rank 1, in Progr. Math., Arithmetic of Higher-Dimensional Algebraic Varieties (Palo Alto, CA, 2002), Volume 226, pp. 205233 (Birkhauser, Boston, 2004).Google Scholar
Shalika, J., Takloo-Bighash, R. and Tschinkel, Y., Rational points on compactifications of semi-simple groups, J. Amer. Math. Soc. 20(4) (2007), 11351186.Google Scholar
Sofos, E., Serre’s problem on the density of isotropic fibres in conic bundles, Proc. Lond. Math. Soc. (3) 113 (2016), 128.Google Scholar
Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press, Cambridge, 1995).Google Scholar
Warner, G., Harmonic Analysis on Semi-Simple Lie Groups I (Springer, New York–Heidelberg, 1972).Google Scholar