Article contents
DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES
Published online by Cambridge University Press: 21 November 2019
Abstract
We study the Daugavet property in tensor products of Banach spaces. We show that $L_{1}(\unicode[STIX]{x1D707})\widehat{\otimes }_{\unicode[STIX]{x1D700}}L_{1}(\unicode[STIX]{x1D708})$ has the Daugavet property when $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$ are purely non-atomic measures. Also, we show that $X\widehat{\otimes }_{\unicode[STIX]{x1D70B}}Y$ has the Daugavet property provided $X$ and $Y$ are $L_{1}$-preduals with the Daugavet property, in particular, spaces of continuous functions with this property. With the same techniques, we also obtain consequences about roughness in projective tensor products as well as the Daugavet property of projective symmetric tensor products.
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 20 , Issue 4 , July 2021 , pp. 1409 - 1428
- Copyright
- © The Author(s), 2019. Published by Cambridge University Press
Footnotes
The research of the first author was supported by MECD (Spain) FPU2016/00015, MICINN (Spain) Grant PGC2018-093794-B-I00 (MCIU, AEI, FEDER, UE), Junta de Andalucía Grant A-FQM-484-UGR18 and Junta de Andalucía Grant FQM-0185. The second author gratefully acknowledges the support of MINECO (Spain) through grants MTM2016-76808-P (AEI/FEDER, UE) and MTM2016-75196-P (AEI/FEDER, UE) and the ‘Severo Ochoa Programme for Centres of Excellence in R&D’ (SEV-2015-0554). The third author was supported by MINECO (Spain) Grant MTM2017-88385-P, QUITEMAD+-CM (S2013/ICE- 2801) and the ‘Severo Ochoa Programme for Centres of Excellence in R&D’ (SEV-2015-0554).
References
- 9
- Cited by