Article contents
THE $\ell$-MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS
Published online by Cambridge University Press: 08 November 2019
Abstract
Let $F$ be a non-archimedean local field of residual characteristic $p$, $\ell \neq p$ be a prime number, and $\text{W}_{F}$ the Weil group of $F$. We classify equivalence classes of $\text{W}_{F}$-semisimple Deligne $\ell$-modular representations of $\text{W}_{F}$ in terms of irreducible $\ell$-modular representations of $\text{W}_{F}$, and extend constructions of Artin–Deligne local constants to this setting. Finally, we define a variant of the $\ell$-modular local Langlands correspondence which satisfies a preservation of local constants statement for pairs of generic representations.
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 20 , Issue 5 , September 2021 , pp. 1585 - 1635
- Copyright
- © Cambridge University Press 2019
References
- 4
- Cited by