Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:12:40.524Z Has data issue: false hasContentIssue false

IMAGES OF QUANTUM REPRESENTATIONS OF MAPPING CLASS GROUPS AND DUPONT–GUICHARDET–WIGNER QUASI-HOMOMORPHISMS

Published online by Cambridge University Press:  27 January 2016

Louis Funar
Affiliation:
Institut Fourier, UMR 5582, Mathématiques, University Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France (louis.funar@univ-grenoble-alpes.fr)
Wolfgang Pitsch
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Espana (pitsch@mat.uab.es)

Abstract

We prove that either the images of the mapping class groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann. 294 (1992), 235–265) and of Gambaudo and Ghys (Bull. Soc. Math. France 133(4) (2005), 541–579). These quasi-homomorphisms are pull-backs of the Dupont–Guichardet–Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulrahim, M. N., A faithfulness criterion for the Gassner representation of the pure braid group, Proc. Amer. Math. Soc. 125(5) (1997), 12491257.Google Scholar
Andersen, J.E., Asymptotic faithfulness of the quantum SU (n) representations of the mapping class groups, Ann. of Math. (2) 163(1) (2006), 347368.Google Scholar
Andersen, J. E., Masbaum, G. and Ueno, K., Topological quantum field theory and the Nielsen–Thurston classification of M (0, 4), Math. Proc. Cambridge Philos. Soc. 141 (2006), 477488.Google Scholar
Arnold, V. I., On some topological invariants of algebraic functions, Tr. Moscov. Mat. Obs. 21 (1970), 2746. (Russian), English transl. in Trans. Moscow Math. Soc. 21 (1970) 30–52.Google Scholar
Barge, J. and Ghys, É., Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), 235265.Google Scholar
Bestvina, M. and Fujiwara, K., Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 6989.Google Scholar
Blanchet, C., Habegger, N., Masbaum, G. and Vogel, P., Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), 883927.Google Scholar
Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd edn, Mathematical Surveys and Monographs, 67 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Brown, K., Cohomology of Groups, Graduate Texts in Mathematics, 87 (Springer, New York–Berlin, 1982).Google Scholar
Burger, M. and Iozzi, A., Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Ann. Sci. Éc. Norm. Supér. (4) 37 (2004), 77103.Google Scholar
Burger, M. and Monod, N., Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. 1 (1999), 199235.Google Scholar
Costantino, F. and Funar, L., Verlinde formulas for signatures, in preparation.Google Scholar
Djoković, D. Z., On commutators in real semisimple Lie groups, Osaka J. Math. 23(1) (1986), 223228.Google Scholar
Djoković, D. Z. and Malzan, J. G., Products of reflections in U(p, q), Mem. Amer. Math. Soc. 37(259) (1982), vi+82 pp.Google Scholar
Dunfield, N. and Wong, H., Quantum invariants of random 3-manifolds, Algebr. Geom. Topol. 11(4) (2011), 21912205.Google Scholar
Dupont, J. L., Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology 15 (1976), 233245.CrossRefGoogle Scholar
Formanek, E., Braid group representations of low degree, Proc. Lond. Math. Soc. (3) 73 (1996), 279322.Google Scholar
Freedman, M. H., Larsen, M. and Wang, Z., The two-eigenvalue problem and density of Jones representation of braid groups, Comm. Math. Phys. 228 (2002), 177199.Google Scholar
Freedman, M. H., Walker, K. and Wang, Z., Quantum SU (2) faithfully detects mapping class groups modulo center, Geom. Topol. 6 (2002), 523539.Google Scholar
Funar, L., On the TQFT representations of the mapping class groups, Pacific J. Math. 188(2) (1999), 251274.Google Scholar
Funar, L., Zariski density and finite quotients of mapping class groups, Int. Math. Res. Not. IMRN 2013(9) 20782096.Google Scholar
Funar, L. and Kohno, T., On Burau’s representations at roots of unity, Geom. Dedicata 169 (2014), 145163.Google Scholar
Funar, L. and Kohno, T., Free subgroups within the images of quantum representations, Forum Math. 26(2) (2014), 337355.Google Scholar
Funar, L. and Pitsch, W., Finite quotients of symplectic groups vs mapping class groups, 33 p., arXiv:1103.1855.Google Scholar
Gambaudo, J.-M. and Ghys, É., Braids and signatures, Bull. Soc. Math. France 133(4) (2005), 541579.Google Scholar
Gervais, S., Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc. 348 (1996), 30973132.Google Scholar
Gilmer, P., On the Witten–Reshetikhin–Turaev representations of mapping class groups, Proc. Amer. Math. Soc. 127(8) (1999), 24832488.Google Scholar
Gilmer, P. and Masbaum, G., Integral lattices in TQFT, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 815844.Google Scholar
Glazman, I. and Liubitch, Y., Analyse linéaire dans les espaces de dimensions finies: manuel en problèmes. (French) Traduit du russe par Henri Damadian. Éditions Mir, Moscow, 1972.Google Scholar
Gohberg, I., Lancaster, P. and Rodman, L., Indefinite Linear Algebra and Applications (Birkhäuser, Basel, 2005).Google Scholar
Guichardet, A. and Wigner, D., Sur la cohomologie réelle des groupes de Lie simples réels, Ann. Sci. École Norm. Sup. (4) 11 (1978), 277292.Google Scholar
Krein, M. G., Foundations of the theory of $\unicode[STIX]{x1D706}$ -zones of stability of a canonical system of linear differential equations with periodic coefficients (In memory of Aleksandr Aleksandrovich Andronov), 413–498, Akad. Nauk SSSR, Moscow, 1955. Reprinted in Four Papers on Ordinary Differential Equations, (Ed. Lev J. Leifman) American Mathematical Society Translations, Series 2, Volume 120, pp. 1–70 (1983).Google Scholar
Kuperberg, G., Denseness and Zariski denseness of Jones braid representations, Geom. Topol. 15 (2011), 1139.Google Scholar
Larsen, M. and Wang, Z., Density of the SO (3) TQFT representation of mapping class groups, Comm. Math. Phys. 260 (2005), 641658.Google Scholar
Marché, J. and Narimannejad, M., Some Asymptotics of TQFT via skein theory, Duke Math. J. 141(3) (2008), 573587.Google Scholar
Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Volume 17 (Springer, Berlin–New York, 1991) x+388 pp.CrossRefGoogle Scholar
Masbaum, G., On representations of mapping class groups in integral TQFT, Oberwolfach Reports, Vol. 5, issue 2, 2008, pp. 1202–1205.Google Scholar
Masbaum, G. and Reid, A., All finite groups are involved in the mapping class groups, Geom. Topol. 16 (2012), 13931412.Google Scholar
Masbaum, G. and Roberts, J., On central extensions of mapping class groups, Math. Ann. 302 (1995), 131150.CrossRefGoogle Scholar
McMullen, C. T., Braid groups and Hodge theory, Math. Ann. 355 (2013), 893946.Google Scholar
Sah, C.-H., Homology of classical Lie groups made discrete. I. Stability theorems and Schur multipliers, Comment. Math. Helv. 61(2) (1986), 308347.Google Scholar
Shtern, A. I., Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups, Ann. Global Anal. Geom. 20 (2001), 199221.CrossRefGoogle Scholar
Squier, C., The Burau representation is unitary, Proc. Amer. Math. Soc. 90 (1984), 199202.Google Scholar
Strebel, R., A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977), 317324.Google Scholar
Thompson, R. C., Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101 (1961), 1633.Google Scholar
Venkataramana, T. N., Image of the Burau representation at dth roots of unity, Ann. of Math. (2) 179(3) (2014), 10411083.Google Scholar
Venkataramana, T. N., Monodromy of cyclic coverings of the projective line, Invent. Math. 197(1) (2014), 145.Google Scholar
Wenzl, H., On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), 59.Google Scholar
Yakubovich, V. A., Critical frequencies of quasicanonical systems, Vestnik Leningrad. Univ. 13(13) (1958), 3563. Reprinted in Four Papers on Ordinary Differential Equations, (Ed. Lev J. Leifman) American Mathematical Society Translations, Series 2, Volume 120, pp. 111–137 (1983).Google Scholar
Zagier, D., Elementary aspects of the Verlinde formula and of the Harder–Narasimhan–Atiyah–Bott formula, in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, Volume 9, pp. 445462 (Bar-Ilan University, Ramat Gan, 1996).Google Scholar