Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:47:13.888Z Has data issue: false hasContentIssue false

Integral moments of automorphic L-functions

Published online by Cambridge University Press:  16 October 2008

Adrian Diaconu
Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA (cad@math.umn.edu)
Paul Garrett
Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA (garrett@math.umn.edu)

Abstract

We obtain second integral moments of automorphic L-functions on adele groups GL2 over arbitrary number fields, by a spectral decomposition using the structure and representation theory of adele groups GL1 and GL2. This requires reformulation of the notion of Poincaré series, replacing the collection of classical Poincaré series over GL2(ℚ) or GL2(ℚ(i)) with a single, coherent, global object that makes sense over a number field. This is the first expression of integral moments in adele-group terms, distinguishing global and local issues, and allowing uniform application to number fields. When specialized to the field of rational numbers ℚ, we recover the classical results on moments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Atkinson, F. V., The mean value of the Riemann zeta function, Acta Math. 81 (1949), 353376.CrossRefGoogle Scholar
2.Banks, W., Twisted symmetric-square L-functions and the non-existence of Siegel zeros on GL(3), Duke Math. J. 87 (1997), 343353.CrossRefGoogle Scholar
3.Bernstein, J. and Reznikov, A., Analytic continuation of representations and estimates of automorphic forms, Annals Math. 150 (1999), 329352.CrossRefGoogle Scholar
4.Borel, A., Introduction to automorphic forms, in Algebraic groups and discontinuous sub groups, Proceedings of Symposia in Pure Mathematics, Volume 9, pp. 199210 (American Mathematical Society, Providence, RI, 1966).CrossRefGoogle Scholar
5.Bruggeman, R. W. and Motohashi, Y., Fourth power moment of Dedekind zeta-functions of real quadratic number fields with class number one, Funct. Approx. Comment. Math. 29 (2001), 4179.CrossRefGoogle Scholar
6.Bruggeman, R. W. and Motohashi, Y., Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function over the Gaussian number field, Funct. Approx. Comment. Math. 31 (2003), 2392.CrossRefGoogle Scholar
7.Chandrasekharan, K., Introduction to analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Volume 148 (Springer, 1968).CrossRefGoogle Scholar
8.Cogdell, J. and Piatetski-Shapiro, I., The arithmetic and spectral analysis of Poincaré series (Academic Press, 1990).Google Scholar
9.Cogdell, J. and Piatetski-Shapiro, I., Remarks on Rankin–Selberg convolutions, in Contributions to automorphic forms, geometry, and number theory (Shalikafest 2002) (ed. Hida, H., Ramakrishnan, D. and Shahidi, F.), pp. 255278 (Johns Hopkins University Press, Baltimore, MD, 2005).Google Scholar
10.Diaconu, A. and Goldfeld, D., Second moments of quadratic Hecke L-series and multiple Dirichlet series, I, in Multiple Dirichlet series, automorphic forms, and analytic number theory, Proceedings of Symposia in Pure Mathematics, Volume 75, pp. 5989 (American Mathematical Society, Providence, RI, 2006).CrossRefGoogle Scholar
11.Diaconu, A. and Goldfeld, D., Second moments of GL2 automorphic L-functions, in Proc. Gauss–Dirichlet Conf., Göttingen, 2005, Clay Mathematics Proceedings, Volume 7, pp. 77105 (American Mathematical Society, Providence, RI, 2005).Google Scholar
12.Diaconu, A., Garrett, P. and Goldfeld, D., Integral moments for GLr, in preparation.Google Scholar
13.Donnelly, H., On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geom. 17 (1982), 239253.Google Scholar
14.Gelbart, S. and Jacquet, H., Forms of GL(2) from the analytic point of view, in Automorphic forms, representations, and L-functions, Proceedings of Symposia in Pure Mathematics, Volume 33, pp. 213254 (American Mathematical Society, Providence, RI, 1979).CrossRefGoogle Scholar
15.Gelfand, I. M., Graev, M. I. and Piatetski-Shapiro, I. I., Representation theory and automorphic functions (Saunders, Philadelphia, PA, 1969; translated from 1964 Russian edn).Google Scholar
16.Godement, R., The decomposition of L 2(Γ\) for Γ = SL(2,ℤ), in Algebraic groups and discontinuous subgroups, Proceedings of Symposia in Pure Mathematics, Volume 9, pp. 211224 (American Mathematical Society, Providence, RI, 1966).CrossRefGoogle Scholar
17.Godement, R., The spectral decomposition of cuspforms, in Algebraic groups and discontinuous subgroups, Proceedings of Symposia in Pure Mathematics, Volume 9, pp. 225234 (American Mathematical Society, Providence, RI, 1966).CrossRefGoogle Scholar
18.Good, A., The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278295.CrossRefGoogle Scholar
19.Good, A., The convolution method for Dirichlet series, in The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemporary Mathematics, Volume 53, pp. 207214 (American Mathematical Society, Providence, RI, 1986).CrossRefGoogle Scholar
20.Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, 5th edn (Academic Press, 1994).Google Scholar
21.Hardy, G. H. and Littlewood, J. E., Contributions to the theory of the Riemann zeta-function and the theory of the distributions of primes, Acta Math. 41 (1918), 119196.CrossRefGoogle Scholar
22.Heath-Brown, D. R., An asymptotic series for the mean value of Dirichlet L-functions, Comment. Math. Helv. 56(1) (1981), 148161.CrossRefGoogle Scholar
23.Hoffstein, J. and Lockhart, P., Coefficients of Maass forms and the Siegel zero, Annals Math. 140 (1994), 161181.CrossRefGoogle Scholar
24.Hoffstein, J. and Ramakrishnan, D., Siegel zeros and cuspforms, Int. Math. Res. Not. 6 (1995), 279308.CrossRefGoogle Scholar
25.Ingham, A. E., Mean-value theorems in the theory of the Riemann zeta-function, Proc.Lond. Math. Soc. 27 (1926), 273300.Google Scholar
26.Jacquet, H., Automorphic forms on GL2, Volume II, Lecture Notes in Mathematics, Volume 278 (Springer, 1972).Google Scholar
27.Jacquet, H. and Langlands, R. P., Automorphic forms on GL2, Lecture Notes in Mathematics, Volume 114 (Springer, 1971).Google Scholar
28.Jutila, M., Mean values of Dirichlet series via Laplace transforms, London Mathematical Society Lecture Notes Series, Volume 247, pp. 169207 (Cambridge University Press, 1997).Google Scholar
29.Kim, H., On local L-functions and normalized intertwining operators, Can. J. Math. 57 (2005), 535597.CrossRefGoogle Scholar
30.Kim, H. and Shahidi, F., Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177197.CrossRefGoogle Scholar
31.Lindenstrauss, E. and Venkatesh, A., Existence and Weyl's law for spherical cusp forms, Geom. Funct. Analysis, in press.Google Scholar
32.Motohashi, Y., An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math. 170 (1993), 181220.CrossRefGoogle Scholar
33.Motohashi, Y., The mean square of Dedekind zeta-functions of quadratic number fields, in Sieve methods, exponential sums, and their applications in number theory: C. Hooley Festschrift (ed. Greaves, G. R. H. et al. ), pp. 309324 (Cambridge University Press, 1997).CrossRefGoogle Scholar
34.Petridis, Y. and Sarnak, P., Quantum unique ergodicity for SL 2()\H 3 and estimates for L-functions, J1. Evol. Eqns 1 (2001), 277290.CrossRefGoogle Scholar
35.Reznikov, A., Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms, J. Am. Math. Soc. 21(2) (2008), 439477.CrossRefGoogle Scholar
36.Sarnak, P., Fourth moments of Grössencharakteren zeta functions, Commun. Pure Appl. Math. 38 (1985), 167178.CrossRefGoogle Scholar
37.Sarnak, P., Integrals of products of eigenfunctions, Int. Math. Res. Not. 6 (1994), 251260.CrossRefGoogle Scholar
38.Weil, A., Adeles and algebraic groups, Progress in Mathematics, Volume 23 (Birkhäuser, Boston, MA, 1982).CrossRefGoogle Scholar
39.Weil, A., Basic number theory (Springer, 1995).Google Scholar
40.Zhang, Q., Integral mean values of Maass L-functions, Int. Math. Res. Not., Article ID: 41417 (2006).CrossRefGoogle Scholar