Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T22:31:22.744Z Has data issue: false hasContentIssue false

LARGE-SCALE SUBLINEARLY LIPSCHITZ GEOMETRY OF HYPERBOLIC SPACES

Published online by Cambridge University Press:  19 December 2018

Gabriel Pallier*
Affiliation:
Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405Orsay, France (gabriel.pallier@math.u-psud.fr)

Abstract

Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.

Type
Research Article
Copyright
© Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author thanks the support of project ANR-15-CE40-0018.

References

Alekseevski, D., Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.) 96(138) (1975), 93117. Translated by A. West.Google Scholar
Bourbaki, N., Eléments de mathématiques, Topologie générale, Chapitres 5 à 10, (Hermann, Paris, 1974).Google Scholar
Bourdon, M., Quasi-conformal geometry and Mostow rigidity, in Géométries Courbure Négative Ou Nulle, Groupes Discrets et Rigidités, Sémin. Congr., Volume 18, pp. 201212 (Soc. Math., France, Paris, 2009).Google Scholar
Bourdon, M., Mostow type rigidity theorems, in Handbook of Group Actions, Advanced Lectures in Math (to appear).Google Scholar
Buyalo, S. and Schroeder, V., Elements of Asymptotic Geometry, EMS Monogr. Math., (European Mathematical Society, Zürich, 2007).Google Scholar
Piaggio, M. Carrasco and Sequeira, E., On quasi-isometry invariants associated to the derivation of a Heintze group, Geom. Dedicata 189 (2017), 116.Google Scholar
Cornulier, Y., Dimension of asymptotic cones of Lie groups, J. Topol. 1(2) (2008), 342361.Google Scholar
Cornulier, Y., Asymptotic cones of Lie groups and cone equivalences, Illinois J. Math. 55(1) (2012), 237259.Google Scholar
Cornulier, Y., Commability and focal locally compact groups, Indiana Univ. Math. J. (1) 64 (2015), 115150.Google Scholar
Cornulier, Y., On the quasi-isometric classification of locally compact groups, in New Directions in Locally Compact Groups, (ed. Caprace, P.-E. and Monod, N.), London Math. Soc. Lecture Notes Series, 447, pp. 275342 (2018).Google Scholar
Cornulier, Y., On sublinearly Bilipschitz equivalence of groups, Ann. Sci. Ec. Norm. Supér. Preprint, 2017 arXiv:1702.06618 (2017).Google Scholar
Cornulier, Y. and Tessera, R., Contracting automorphisms and L p-cohomology in degree one, Ark. Mat. 49(2) (2011), 295324.Google Scholar
Druţu, C., Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Comput. 12 (2002), 99135.Google Scholar
Druţu, C. and Kapovich, M., Geometric Group Theory, AMS Colloquium Publications, Volume 63 (2017).Google Scholar
Dyubina (Erschler), A. and Polterovich, I., Explicit constructions of universal R -trees and asymptotic geometry of hyperbolic spaces, Bull. Lond. Math. Soc. 33(6) (2001), 727734.Google Scholar
Efremovich, V. A. and Tikhomirova, E. S., Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk SSSR Ser. Mat. 28(5) (1964), 11391144.Google Scholar
Federer, H., Geometric Measure Theory, Grundlehren Math. Wiss., Volume 129 (Springer, Berlin, 1969).Google Scholar
Frink, A. H., Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133142.Google Scholar
Ghys, E. and de la Harpe, P., Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in Mathematics, Volume 83 (Birkhäuser, Basel, 1990).Google Scholar
Gromov, M., Hyperbolic groups, in Essays in Group Theory, (ed. Gersten, S.M.), Mathematical Sciences Research Institute Publications, Volume 8 (Springer, New York, 1987).Google Scholar
Gromov, M., Asymptotic invariants of infinite groups, in Geometric Group Theory, vol. 2, (ed. Niblo, A. and Roller, Martin A.), London Mathematical Society Lecture Note Series, Volume 182 (Cambridge University Press, Cambridge, 1993).Google Scholar
Heintze, E., On homogeneous manifolds of negative curvature, Math. Ann. (1) 211 (1974), 2334.Google Scholar
Mackay, J. M. and Tyson, J. T., Conformal Dimension: Theory and Application, University Lecture Series, Volume 54 (Amer. Math. Soc., Providence, RI, 2010).Google Scholar
Morse, A. P., A theory of covering and differentiation, Trans. Amer. Math. Soc. 55(2) (1944), 205235.Google Scholar
Pansu, P., Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I 14 (1989), 177212.Google Scholar
Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129(1) (1989), 160.Google Scholar
Shchur, V., A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary, J. Funct. Anal. 264(3) (2013), 815836.Google Scholar
Thurston, W., The Geometry and Topology of Three-manifolds, Lecture Notes (Princeton, 1978–1979).Google Scholar
Weil, A., L’intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., Volume 869 (Hermann, Paris, 1940).Google Scholar