Article contents
RIEMANN MINIMAL SURFACES IN HIGHER DIMENSIONS
Published online by Cambridge University Press: 20 December 2006
Abstract
We prove the existence of a one parameter family of minimal embedded hypersurfaces in $\mathbb{R}^{n+1}$, for $n\geq3$, which generalize the well known two-dimensional ‘Riemann minimal surfaces’. The hypersurfaces we obtain are complete, embedded, simply periodic hypersurfaces which have infinitely many parallel hyperplanar ends. By opposition with the two-dimensional case, they are not foliated by spheres.
Résumé Nous prouvons l’existence d’une famille à un paramètre d’hypersurfaces de $\mathbb{R}^{n+1}$, pour $n\geq 3$, qui sont minimales et qui généralisent les surfaces minimales de Riemann. Les hypersurfaces que nous obtenons sont des hypersurfaces complètes, simplement périodiques et qui ont une infinité de bouts hyperplans parallèles. Contrairement au cas des surfaces, i.e. $n=2$, ces hypersurfaces ne sont pas feuilletées par des sphères.
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 6 , Issue 4 , October 2007 , pp. 613 - 637
- Copyright
- 2006 Cambridge University Press
- 5
- Cited by