Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:51:12.087Z Has data issue: false hasContentIssue false

SUPERORBITS

Published online by Cambridge University Press:  20 July 2016

Alexander Alldridge
Affiliation:
Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Germany (alldridg@math.uni-koeln.de)
Joachim Hilgert
Affiliation:
Universität Paderborn, Institut für Mathematik, 33095 Paderborn, Germany (hilgert@math.upb.de)
Tilmann Wurzbacher
Affiliation:
Institut É. Cartan (IECL), Université de Lorraine et C.N.R.S., 57045 Metz, France (tilmann.wurzbacher@univ-lorraine.fr)

Abstract

We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by Deutsche Forschungsgemeinschaft (DFG), grant nos. SFB/TR 12 (all authors), the Heisenberg grant AL 698/3-1 (A.A.), the Leibniz prize to M. Zirnbauer ZI 513/2-1 (A.A.), SFB TRR 183 (A.A.), and the Institutional Strategy of the University of Cologne within the German Excellence Initiative (all authors).

References

Aguilar, M., Gitler, S. and Prieto, C., Algebraic Topology from a Homotopical Viewpoint, Universitext (Springer, New York, 2002).Google Scholar
Alldridge, A., Fréchet globalisations of Harish–Chandra modules, Int. Math. Res. Not. IMRN (2016), arXiv:1403.4055.Google Scholar
Alldridge, A. and Hilgert, J., Invariant Berezin integration on homogeneous supermanifolds, J. Lie Theory 20(1) (2010), 6591.Google Scholar
Alldridge, A., Hilgert, J. and Laubinger, M., Harmonic analysis on Heisenberg–Clifford Lie supergroups, J. Lond. Math. Soc. (2) 87(2) (2013), 561585, doi:10.1112/jlms/jds058.Google Scholar
Alldridge, A., Hilgert, J. and Wurzbacher, T., Singular superspaces, Math. Z. 278 (2014), 441492, doi:10.1007/s00209-014-1323-5.Google Scholar
Alldridge, A. and Palzer, W., Asymptotics of spherical superfunctions on rank one Riemannian symmetric superspaces, Doc. Math. 19 (2014), 13171366.Google Scholar
Alldridge, A. and Shaikh, Z., Superbosonization via Riesz superdistributions, Forum Math. Sigma 2 (2014), e9, 64, doi:10.1017/fms.2014.5.Google Scholar
Almorox, A. L., Supergauge theories in graded manifolds, in Differential Geometric Methods in Mathematical Physics (Salamanca, 1985), Lecture Notes in Mathematics, Volume 1251, pp. 114136 (Springer, Berlin, 1987), doi:10.1007/BFb0077318.Google Scholar
Andler, M. and Sahi, S., Equivariant cohomology and tensor categories, Preprint, 2008, arXiv:0802.1038.Google Scholar
Balduzzi, L., Carmeli, C. and Cassinelli, G., Super G-spaces, in Symmetry in Mathematics and Physics, Contemporary Mathematics, Volume 490, pp. 159176 (American Mathematical Society, Providence, RI, 2009), doi:10.1090/conm/490/09594.Google Scholar
Bourbaki, N., Elements of Mathematics. General Topology. Part 1 (Hermann, Paris; Addison-Wesley Publishing Co., Reading, MA–London–Don Mills, Ont, 1966).Google Scholar
Boyer, C. P. and Sánchez-Valenzuela, O. A., Lie supergroup actions on supermanifolds, Trans. Amer. Math. Soc. 323(1) (1991), 151175, doi:10.2307/2001621.Google Scholar
Carmeli, C., Cassinelli, G., Toigo, A. and Varadarajan, V. S., Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles, Comm. Math. Phys. 263(1) (2006), 217258, doi:10.1007/s00220-005-1452-0.Google Scholar
Carmeli, C., Cassinelli, G., Toigo, A. and Varadarajan, V. S., Erratum to: Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles, Comm. Math. Phys. 307(2) (2011), 565566, doi:10.1007/s00220-011-1332-8.Google Scholar
Carmeli, C., Caston, L. and Fioresi, R., Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics (European Mathematical Society (EMS), Zürich, 2011).Google Scholar
Chevalley, C. and Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85124.Google Scholar
Clerc, J.-L., Eymard, P., Faraut, J., Raïs, M. and Takahashi, R., Analyse harmonique, in Les cours du C.I.M.P.A. (CIMPA/ICPAM, Nice, 1982).Google Scholar
Deligne, P. and Morgan, J. W., Notes on Supersymmetry, Quantum Fields and Strings: A Course for Mathematiciansm, Volume 1, pp. 4198 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Demazure, M. and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs (Masson & Cie, Éditeur, Paris, 1970).Google Scholar
Duistermaat, J. J., On global action-angle coordinates, Comm. Pure Appl. Math. 33(6) (1980), 687706, doi:10.1002/cpa.3160330602.Google Scholar
Fioresi, R. and Lledó, M. A., On algebraic supergroups, coadjoint orbits, and their deformations, Comm. Math. Phys. 245(1) (2004), 177200.Google Scholar
Frydryszak, A. M., Q-representations and unitary representations of the super-Heisenberg group and harmonic superanalysis, J. Phys. Conf. Ser. 563(1) (2014), 012010.Google Scholar
Gabriel, P., Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) pp. 251–286 (Inst. Hautes Études Sci., Paris, 1963) (French).Google Scholar
Grothendieck, A., Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119221.Google Scholar
Grothendieck, A. and Dieudonné, J. A., Éléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften, Volume 166 (Springer, Berlin, 1971).Google Scholar
Guillemin, V. and Sternberg, S., Symplectic Techniques in Physics (Cambridge University Press, Cambridge, 1984).Google Scholar
Hilgert, J. and Neeb, K.-H., Structure and Geometry of Lie Groups, Springer Monographs in Mathematics (Springer, New York, 2012).Google Scholar
Hohnhold, H., Kreck, M., Stolz, S. and Teichner, P., Differential forms and 0-dimensional supersymmetric field theories, Quantum Topol. 2(1) (2011), 141, doi:10.4171/QT/12.Google Scholar
Kac, V. G., Lie superalgebras, Adv. Math. 26(1) (1977), 896.Google Scholar
Kirillov, A. A., Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17(4(106)) (1962), 57110 (Russian); English transl. Russian Math. Surv., 17, 53–104 doi:10.1070/RM1962v017n04ABEH004118.Google Scholar
Kostant, B., Graded manifolds, graded Lie theory, and prequantization, in Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn), Lecture Notes in Mathematics, Volume 570, pp. 177306 (Springer, Berlin, 1977).Google Scholar
Kostant, B., Harmonic analysis on graded (or super) Lie groups, in Group Theoretical Methods in Physics (Sixth Internat. Colloq., Tübingen, 1977), Lecture Notes in Physics, Volume 79, pp. 4750 (Springer, Berlin–New York, 1978).Google Scholar
Leites, D. A., Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk 1 (1980), 357 (Russian); English Transl., Russian Math. Surveys, 35(1) (1980), 1–64.Google Scholar
Mac Lane, S., Categories for the Working Mathematician, 2nd edn, Graduate Texts in Mathematics, Volume 5 (Springer, New York, 1998).Google Scholar
Manin, Y. I., Gauge Field Theory and Complex Geometry, 2nd edn, Grundlehren der Mathematischen Wissenschaften, Volume 289 (Springer, Berlin, 1997).Google Scholar
Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, 3rd edn, Ergebnisse der Mathematik, Volume 34 (Springer, Berlin, 1994), doi:10.1007/978-3-642-57916-5.Google Scholar
Neeb, K.-H. and Salmasian, H., Lie supergroups unitary representations, and invariant cones, in Supersymmetry in Mathematics and Physics, Lecture Notes in Mathematics, Volume 2027, pp. 195239 (Springer, Heidelberg, 2011), doi:10.1007/978-3-642-21744-9_10.Google Scholar
Salmasian, H., Unitary representations of nilpotent super Lie groups, Comm. Math. Phys. 297(1) (2010), 189227, doi:10.1007/s00220-010-1035-6.Google Scholar
Tuynman, G. M., Super symplectic geometry and prequantization, J. Geom. Phys. 60(12) (2010), 19191939, doi:10.1016/j.geomphys.2010.06.009.Google Scholar
Tuynman, G. M., Super Heisenberg orbits: a case study, in XXIX Workshop on Geometric Methods in Physics, Volume 1307, pp. 181184 (American Institute of Physics, Melville, NY, 2010).Google Scholar