Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T20:20:56.834Z Has data issue: false hasContentIssue false

SUR LES DÉFORMATIONS p-ADIQUES DE CERTAINES REPRÉSENTATIONS AUTOMORPHES

Published online by Cambridge University Press:  13 March 2006

Christopher Skinner
Affiliation:
Department of Mathematics, University of Michigan, 525 East University Avenue, Ann Arbor, MI 48109-1109, USA (cskinner@umich.edu)
Eric Urban
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA (urban@math.columbia.edu)

Abstract

Par une méthode entièrement nouvelle utilisant les déformations $p$-adiques de pentes positives de représentations automorphes pour $\mathrm{GSp}_{4/\mathbb{Q}}$, nous prouvons que le $p$-groupe de Selmer $H^1_f(\mathbb{Q},V_f(k))$ associé à une forme modulaire $f$ de poids $2k$ et ordinaire en $p$ est infini si l’ordre d’annulation à l’entier $k$ de la fonction $L$ de $f$ est impair.

By an entirely new method that makes use of $p$-adic deformations of automorphic representations of $\mathrm{GSp}_{4/\mathbb{Q}}$, we prove that the $p$-adic Selmer group $H^1_f(\mathbb{Q},V_f(k))$ associated to a modular form $f$ of weight $2k$ that is ordinary at $p$ is infinite if the order of vanishing at $k$ of the $L$-function of $f$ is odd.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)