Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:28:18.269Z Has data issue: false hasContentIssue false

TOROIDAL q-OPERS

Published online by Cambridge University Press:  18 June 2021

Peter Koroteev
Affiliation:
Department of Mathematics, University of California, Berkeley, CA 94720, USA
Anton M. Zeitlin
Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA IPME RAS, St. Petersburg, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define and study the space of q-opers associated with Bethe equations for integrable models of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study of the enumerative geometry of cyclic quiver varieties, in particular the ADHM moduli spaces. We define $\left (\overline {GL}(\infty ),q\right )$ -opers with regular singularities and then, by imposing various analytic conditions on singularities, arrive at the desired Bethe equations for toroidal q-opers.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Aganagic, M., Frenkel, E. and Okounkov, A., Quantum $q$ -Langlands correspondence, Trans. Moscow Math. Soc. 79 (2018), 183.CrossRefGoogle Scholar
Aganagic, M. and Okounkov, A., Quasimap counts and Bethe eigenfunctions, Mosc. Math. J. 17(4) (2017), 565600.CrossRefGoogle Scholar
Bazhanov, V., Frassek, R., Lukowski, T., Meneghelli, C. and Staudacher, M., Baxter Q-operators and representations of Yangians, Nuclear Phys. B850 (2011), 148174.CrossRefGoogle Scholar
Bazhanov, V., Lukyanov, S. L. and Zamolodchikov, A. B., Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Comm. Math. Phys. 200 (1999), 297324.CrossRefGoogle Scholar
Bazhanov, V., Lukyanov, S. L. and Zamolodchikov, A. B., Spectral determinants for Schroedinger equation and Q-operators of conformal field theory, J. Stat. Phys. 102(3/4) (2001), 567576.CrossRefGoogle Scholar
Berenstein, A. and Zelevinsky, A., Total positivity in Schubert varieties, Comment. Math. Helvet. 72(1) (1997), 128166.CrossRefGoogle Scholar
Berenstein, A., Fomin, S. and Zelevinsky, A., Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122(1) (1996), 49149.CrossRefGoogle Scholar
Braverman, A., Maulik, D. and Okounkov, A., ‘Quantum cohomology of the Springer resolution’, Preprint, 2010, 1001.0056.Google Scholar
Chari, V. and Pressley, A., A Guide to Quantum Groups (Cambridge University Press, Location, 1994).Google Scholar
Chernyak, D., Leurent, S. and Dmytro, V., ‘Completeness of Wronskian Bethe equations for rational $gl\left(m|n\right)$ spin chain’, Preprint, 2020, https://arxiv.org/abs/2004.02865.Google Scholar
Dorey, P. and Tateo, R., Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32(38) (1999), L419L425.CrossRefGoogle Scholar
Drinfeld, V. and Sokolov, V., Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30(2) (1985), 19752036.CrossRefGoogle Scholar
Feigin, B., Integrable systems, shuffle algebras, and Bethe equations, Trans. Moscow Math. Soc. 77 (2016), 203246.CrossRefGoogle Scholar
Feigin, B. and Frenkel, E., Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Internat. J. Modern Phys. A 07(supp01a) (1992), 197215.CrossRefGoogle Scholar
Feigin, B., Frenkel, E. and Reshetikhin, N., Gaudin model, Bethe ansatz and critical level, Comm. Math. Phys. 166 (1994), 2762.CrossRefGoogle Scholar
Feigin, B., Frenkel, E. and Toledano Laredo, V., Gaudin models with irregular singularities, Adv. Math. 223 (2010), 873948.CrossRefGoogle Scholar
Feigin, B., Jimbo, M., Miwa, T. and Mukhin, E., Finite type modules and Bethe ansatz for quantum toroidal gl1, Comm. Math. Phys. 356(1) (2017), 285327.CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12(2) (1999), 335380.CrossRefGoogle Scholar
Frenkel, E., Opers on the projective line, flag manifolds and Bethe Ansatz, Mosc. Math. J. 4 (2003), 655705.CrossRefGoogle Scholar
Frenkel, E., Lectures on Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), 297404.CrossRefGoogle Scholar
Frenkel, E. and Hernandez, D., Baxter’s relations and spectra of quantum integrable models, Duke Math. J. 164(12) (2015), 24072460.CrossRefGoogle Scholar
Frenkel, E. and Hernandez, D., Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers, Comm. Math. Phys. 362 (2018), 361414.CrossRefGoogle Scholar
Frenkel, E., Hernandez, D. and Reshetikhin, N., to appear. Google Scholar
Frenkel, E., Koroteev, P., Sage, D. S. and Zeitlin, A. M., q-Opers, QQ-systems, and Bethe ansatz, J. Europ. Math. Soc., to appear, 2002.07344.Google Scholar
Frenkel, E. and Reshetikhin, N., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 160.CrossRefGoogle Scholar
Frenkel, I., Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44(3) (1981), 259327.CrossRefGoogle Scholar
Gaiotto, D. and Koroteev, P., On three dimensional quiver gauge theories and integrability, J. High Energy Phys. 1305 (2013), 126.Google Scholar
Ginzburg, V., ‘Lectures on Nakajima’s quiver varieties’, Preprint, 2009, 1703. https://arxiv.org/abs/0905.0686. Google Scholar
Gopakumar, R. and Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3(5) (1999), 14151443.Google Scholar
Hernandez, D., The algebra ${U}_q\left({\hat{\mathrm{sl}}}_{\infty}\right)$ and applications, J. Algebra 329(1) (2010), 147162.CrossRefGoogle Scholar
Hernandez, D. and Jimbo, M., Asymptotic representations and Drinfeld rational fractions, Compos. Math. 148(5) (2012), 15931623.CrossRefGoogle Scholar
Hernandez, D. and Leclerc, B., Cluster algebras and category O for representations of Borel subalgebras of quantum affine algebras, Algebra Number Theory 10(9) (2016), 20152052.CrossRefGoogle Scholar
Kac, V., Raina, A. and Rozhkovskaya, N., Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 2nd ed. (World Scientific Publishing, Location, 2013).CrossRefGoogle Scholar
Kazakov, V., Leurent, S. and Volin, D., T-system on T-hook: Grassmannian solution and twisted quantum spectral curve, J. High Energy Phys. 2016, 44(2016).CrossRefGoogle Scholar
Korepin, V., Bogoliubov, N. and Izergin, A., Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
Koroteev, P., A-type quiver varieties and ADHM moduli spaces, Comm. Math. Phys. 381(1) (2021), 175207.CrossRefGoogle Scholar
Koroteev, P., Pushkar, P., Smirnov, A. and Zeitlin, A., ‘ Quantum K-theory of quiver varieties and many-body systems’ , Preprint, 2017, https://arxiv.org/abs/1705.10419.Google Scholar
Koroteev, P., Sage, D. and Zeitlin, A., (SL(N),q)-opers, the q-Langlands correspondence, and quantum/classical duality, Comm. Math. Phys. 381(2) (2021), 641672.CrossRefGoogle Scholar
Koroteev, P. and Sciarappa, A., ‘Quantum hydrodynamics from large-n supersymmetric gauge theories’, Lett. Math. Phys. 108, (2018), 4595.CrossRefGoogle Scholar
Koroteev, P. and Zeitlin, A. M., ‘3d mirror symmetry for instanton moduli spaces’, Preprint, 2021, https://arxiv.org/abs/2105.00588.Google Scholar
Koroteev, P. and Zeitlin, A. M., qKZ/tRS duality via quantum K-theoretic counts, Math. Res. Lett. 28(2) (2021), 435470.CrossRefGoogle Scholar
Krichever, I., Lipan, O., Wiegmann, P. and Zabrodin, A., Quantum integrable models and discrete classical Hirota equations, Comm. Math. Phys. 188(2) (1997), 267304.CrossRefGoogle Scholar
Masoero, D., Raimondo, A. and Valeri, D., Bethe ansatz and the spectral theory of affine Lie algebra-valued connections I. The simply-laced case, Comm. Math. Phys. 344(3) (2016), 719750.CrossRefGoogle Scholar
Masoero, D., Raimondo, A. and Valeri, D., Bethe ansatz and the spectral theory of affine Lie algebra–valued connections II: The non simply–laced case, Comm. Math. Phys. 349(3) (2017), 10631105.CrossRefGoogle Scholar
Maulik, D. and Okounkov, A., ‘Quantum groups and quantum cohomology’, Preprint, 2012, 1211.1287.Google Scholar
Mukhin, E. and Varchenko, A., Discrete Miura opers and solutions of the Bethe ansatz equations, Comm. Math. Phys. 256 (2005), 565588.Google Scholar
Nakajima, H., Lectures on Hilbert Schemes of Points on Surfaces (American Mathematical Society, Providence, RI, 1999).Google Scholar
Negut, A., ‘The R-matrix of the quantum toroidal algebra’, Preprint, 2020, 2005.14182.Google Scholar
Negut, A., ‘Quantum algebras and cyclic quiver varieties’, Preprint, 2015, 1504.06525.Google Scholar
Nekrasov, N. and Shatashvili, S., Supersymmetric vacua and Bethe ansatz, Nuclear Phys. Proc. Suppl. 192-193 (2009), 91112.CrossRefGoogle Scholar
Okounkov, A., ‘Lectures on K-theoretic computations in enumerative geometry’, Preprint, 2015, https://arxiv.org/abs/1512.07363.Google Scholar
Okounkov, A. and Smirnov, A., ‘Quantum difference equation for Nakajima varieties’, Preprint, 2016, 1602.09007.Google Scholar
Pushkar, P., Smirnov, A. and Zeitlin, A., Baxter Q-operator from quantum K-theory, Adv. Math. 360 (2020), 106919.CrossRefGoogle Scholar
Reshetikhin, N., ‘Lectures on the integrability of the 6-vertex model’, Preprint, 2010, 1010.5031.Google Scholar
Schiffmann, O. and Vasserot, E., The elliptic Hall algebra and the $K$ -theory of the Hilbert scheme of ${A}^2$ , Duke Math. J. 162(2) (2013), 279366.CrossRefGoogle Scholar
Semenov-Tian-Shansky, M. and Sevostyanov, A., Drinfeld-Sokolov reduction for difference operators and deformations of $\mathbf{\mathcal{W}}$ -algebras II. The general semisimple case, Comm. Math. Phys. 192 (1998), 631647.CrossRefGoogle Scholar
Smirnov, A., ‘Rationality of capped descendent vertex in $K$ -theory’, Preprint, 2016, https://arxiv.org/abs/1612.01048.Google Scholar
Tarasov, V. and Varchenko, A., Duality for Knizhnik–Zamolodchikov and dynamical equations, Acta Appl. Math. 73(1/2) (2002), 141154.CrossRefGoogle Scholar
Tarasov, V. and Varchenko, A., Dynamical differential equations compatible with rational qKZ equations, Lett. Math. Phys. 71(2) (2005), 101108.CrossRefGoogle Scholar