Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:57:35.632Z Has data issue: false hasContentIssue false

The unitary spherical spectrum for split classical groups

Part of: Lie groups

Published online by Cambridge University Press:  16 February 2010

Dan Barbasch
Affiliation:
Department of Mathematics, Cornell University, Ithaca, NY 14850, USA, (barbasch@math.cornell.edu)

Abstract

This paper gives a complete description of the spherical unitary dual of split classical real and p-adic groups. The proof makes heavy use of the affine graded Hecke algebra.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J., Barbasch, D. and Vogan, D., The Langlands classification and irreducible characters of real reductive groups, Progress in Mathematics, Volume 104 (Birkhäuser, 1992).CrossRefGoogle Scholar
2.Barbasch, D., The unitary dual of complex classical groups, Invent. Math. 96 (1989), 103176.CrossRefGoogle Scholar
3.Barbasch, D., Unipotent representations for real reductive groups, in Proc. of International Congress of Mathematicians, Kyoto, 1990, pp. 769777 (Springer/The Mathematical Soc. of Japan, 1990).Google Scholar
4.Barbasch, D., The spherical unitary dual for split classical p-adic groups, in Geometry and representation theory of real and p-adic groups (ed. Tirao, J., Vogan, D. and Wolf, J.), pp. 12 (Birkhäuser, 1996).Google Scholar
5.Barbasch, D., Orbital integrals of nilpotent orbits, Proc. Symp. Pure Math. 68 (2000), 97110.CrossRefGoogle Scholar
6.Barbasch, D., Relevant and petite K-types for split groups, in Functional analysis (ed. Bakić, D. et al. ), Volume 8, Various Publications Series, Number 47 (Ny Munkegade, Aarhus, Denmark, 2004).Google Scholar
7.Barbasch, D. and Bozicevic, M., The associated variety of an induced representation, Proc. Am. Math. Soc. 127(1) (1999), 279288.CrossRefGoogle Scholar
8.Barbasch, D. and Ciubotaru, D., Spherical unitary principal series, Pure Appl. Math. Q. 1(4) (2005), 755789.CrossRefGoogle Scholar
9.Barbasch, D. and Ciubotaru, D., Whittaker unitary dual of affine Hecke algebras of type E, Compositio Math., in press.Google Scholar
10.Barbasch, D. and Moy, A., A unitarity criterion for p-adic groups, Invent. Math. 98 (1989), 1938.CrossRefGoogle Scholar
11.Barbasch, D. and Moy, A., Reduction to real infinitesimal character in affine Hecke algebras, J. Am. Math. Soc. 6(3) (1993), 611635.CrossRefGoogle Scholar
12.Barbasch, D. and Moy, A., Unitary spherical spectrum for p-adic classical groups, Acta Appl. Math. 5(1) (1996), 337.CrossRefGoogle Scholar
13.Barbasch, D. and Sepanski, M., Closure ordering and the Kostant-Sekiguchi correspondence, Proc. Am. Math. Soc. 126(1) (1998), 311317.CrossRefGoogle Scholar
14.Barbasch, D. and Vogan, D., The local structure of characters, J. Funct. Analysis 37(1) (1980), 2755.CrossRefGoogle Scholar
15.Barbasch, D. and Vogan, D., Weyl group representation and nilpotent orbits, in Representation Theory of Reductive Groups, Park City, UT, 1982, Progress in Mathematics, Volume 40, pp. 2133 (Birkhäuser, 1983).Google Scholar
16.Barbasch, D. and Vogan, D., Unipotent representations of complex semisimple groups, Annals Math. 121 (1985), 41110.CrossRefGoogle Scholar
17.Barchini, L. and Zierau, R., Certain components of the Springer fiber and associated cycles for discrete series representations of SU(p, q), Represent. Theory 12 (2008), 403434.CrossRefGoogle Scholar
18.Borel, A., Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233259.CrossRefGoogle Scholar
19.Cartier, P., Representations of p-adic groups: a survey, in Automorphic forms and L-functions (ed. Borel, A. and Casselman, W.), AMS Proc. of Symposia in Pure Mathematics, Volume 33, Part 1, pp. 111155 (American Mathematical Soc., Providence, RI, 1979).Google Scholar
20.Chang, J.-T., Asymptotics and characteristic cycles for representations of complex groups, Compositio Math. 88(3) (1993), 265283.Google Scholar
21.Collingwood, D. and McGovern, M., Nilpotent orbits in semisimple Lie algebras (Van Nostrand Reinhold, New York, 1993).Google Scholar
22.Knapp, A., Representation theory of real semisimple groups: an overview based on examples (Princeton University Press, 1986).CrossRefGoogle Scholar
23.Knapp, A. and Vogan, D., Cohomological induction and unitary representations, Princeton Mathematical Series, Volume 45 (Princeton University Press, 1995).CrossRefGoogle Scholar
24.Lusztig, G., Characters of reductive groups over a finite field, Annals of Mathematics Studies, Volume 107 (Princeton University Press, 1984).Google Scholar
25.Lusztig, G. and Spaltenstein, N., Induced unipotent classes, J. Lond. Math. Soc. 19 (1979), 4152.CrossRefGoogle Scholar
26.McGovern, W., Cells of Harish-Chandra modules for real classical groups, Am. J. Math. 120 (1998), 211228.CrossRefGoogle Scholar
27.Oda, H., Generalization of Harish-Chandra's basic theorem for Riemannian symmetric spaces of non-compact type, Adv. Math. 208 (2007), 549596.CrossRefGoogle Scholar
28.Schmid, W. and Vilonen, K., Characteristic cycles and wave front cycles of representations of reductive groups, Annals Math. 151 (2000), 10711118.CrossRefGoogle Scholar
29.Stein, E., Analysis in matrix space and some new representations of SL(n,ℂ), Annals Math. 86 (1967), 461490.CrossRefGoogle Scholar
30.Tadic, M., Classification of unitary representations in irreducible representations of general linear groups, Annales Scient. Éc. Norm. Sup. 19(3) (1986), 335382.CrossRefGoogle Scholar
31.Trapa, P., Symplectic and orthogonal Robinson-Schensted algorithms, J. Alg. 286 (2005), 386404.CrossRefGoogle Scholar
32.Vogan, D., Representations of real reductive Lie groups, Progress in Mathematics, Volume 15 (Birkhäuser, 1981).Google Scholar
33.Vogan, D., Irreducible characters of semisimple groups, IV, Duke Math. J. 49 (1982), 9431073.CrossRefGoogle Scholar
34.Vogan, D., The unitary dual of GL(n) over an archimedean field, Invent. Math. 83 (1986), 449505.CrossRefGoogle Scholar
35.Vogan, D., Associated varieties and unipotent representations, in Harmonic analysis on reductive groups (ed. Barker, W. and Sally, P.), pp. 315388 (Birkhäuser, 1991).CrossRefGoogle Scholar
36.Weyl, H., The classical groups: their invariants and representations, Princeton Landmarks in Mathematics (Princeton University Press, 1997).Google Scholar
37.Zelevinsky, A., Induced representations of reductive p-adic groups, II, On irreducible representations of GL(n), Annales Scient. Éc. Norm. Sup. 13(2) (1980), 165210.CrossRefGoogle Scholar