Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:04:49.906Z Has data issue: false hasContentIssue false

14 Prevalence of Mid-Range Visual Functions and their Relationship to Higher-order Visual Functions after Stroke

Published online by Cambridge University Press:  21 December 2023

Edward H.F. de Haan*
Affiliation:
University of Amsterdam, Amsterdam, Noord Holland, Netherlands.
Nils S. van den Berg
Affiliation:
University of Amsterdam, Amsterdam, Noord Holland, Netherlands.
Nikki A. Lammers
Affiliation:
University of Amsterdam, Amsterdam, Noord Holland, Netherlands.
Selma Lugtmeijer
Affiliation:
Brock University, St. Catharines, Ontario, Canada.
Anouk R. Smits
Affiliation:
University of Utrecht, Utrecht, Utrecht, Netherlands
Yaïr Pinto
Affiliation:
University of Amsterdam, Amsterdam, Noord Holland, Netherlands.
*
Correspondence: Edward de Haan, University of Amsterdam, e.h.f.dehaan@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Visual deficits are common after stroke and are powerful predictors for the chronic functional outcome. However, while basic visual field and recognition deficits are relatively easy to assess with standardized methods, selective deficits in visual primitives, such as shape or motion, are harder to identify, as they often require a symmetrical bilateral posterior lesion in order to provoke full field deficits. We aimed to investigate the prevalence and co-occurrence of hemifield “mid-range” visual deficits. In addition, we looked at the repercussions of these mid-range deficits on higher-order visual cognitive functions, such as visuoconstruction and memory. At a more theoretical level, we investigated whether associations between deficits in 'mid-range’ visual functions and deficits in higher-order visual cognitive functions are in line with a hierarchical, two-pathway model of the visual brain.

Participants and Methods:

In 220 stroke patients and a healthy control group (N=49), we assessed the perception of colour (isoluminant stimuli in the red-green range), shape (Efron shapes), location (dot in a circle), orientation (lines at different angles), contrast (bars with converging grey-level differences), texture (from Brodatz grayscale texture album) and correlated motion (different percentages of dots moving in the same direction). All tasks started with a fixation dot presented at the centre of the screen. After one second, a target stimulus was presented on the horizontal midline at either 5° to the left or at 5° to the right side of the fixation. Then, after 1.5 seconds, two response items appeared in addition to the target stimulus for three seconds. To control for eye movements, we used an eye-tracker to present the target in a gaze contingent fashion. Thus, the target always remained in the correct retinal position independent of eye movements. In a subset of 182 ischemic stroke patients, we also assessed visuoconstruction (Copy Rey-Complex Figure Test), visual emotion recognition (FEEST test) and visual memory (Doors-test).

Results:

The results showed that deficits in motion-perception were most prevalent (26%), followed by colour (22%), texture (22%), location (21%), orientation (18%), contrast (14%), shape (14%) and glossiness (13%). 63% of the stroke patients showed one or more mid-range visual deficits. Overlap of deficits was small; they mostly occurred in isolation or co-occurred with only one or two other deficits. Impairments in mid-range visual functions could not predict performance on higher-order visual cognitive tasks. Impaired visuoconstruction and visual memory were only modestly predicted by a worse location perception. Impaired emotion perception was modestly predicted by a worse orientation perception. In addition, double dissociations were found: there were patients with selective deficits in 'mid-range’ visual functions without higher-order visual deficits and vice versa.

Conclusions:

First, deficits in “mid-range” visual functions are very prevalent. Since we found no strong patterns of co-occurrences, we suggest that an assessment of deficits at this level of visual processing requires screening the full range of visual functions. Second, the relationship between mid-range visual tasks and higher-order visual cognitive tasks is weak. Finally, our findings are not supportive of the hierarchical, two-pathway model but more in line with an alternative patchwork model.

Type
Poster Session 08: Assessment | Psychometrics | Noncredible Presentations | Forensic
Copyright
Copyright © INS. Published by Cambridge University Press, 2023