Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T09:47:00.816Z Has data issue: false hasContentIssue false

Impaired Response Inhibition in Veterans with Post-Traumatic Stress Disorder and Mild Traumatic Brain Injury

Published online by Cambridge University Press:  18 May 2012

Diane Swick*
Affiliation:
Research Service, Veterans Affairs Northern California Health Care System, Martinez, California and Department of Neurology, University of California, Davis, California
Nikki Honzel
Affiliation:
Research Service, Veterans Affairs Northern California Health Care System, Martinez, California and Department of Neurology, University of California, Davis, California
Jary Larsen
Affiliation:
Research Service, Veterans Affairs Northern California Health Care System, Martinez, California and Department of Neurology, University of California, Davis, California
Victoria Ashley
Affiliation:
Research Service, Veterans Affairs Northern California Health Care System, Martinez, California and Department of Neurology, University of California, Davis, California
Timothy Justus
Affiliation:
Research Service, Veterans Affairs Northern California Health Care System, Martinez, California and Department of Neurology, University of California, Davis, California
*
Correspondence and reprint requests to: Diane Swick, VA Northern California Health Care System, Research Service (151), 150 Muir Road, Martinez, CA 94553. E-mail: swicklab@gmail.com

Abstract

Combat veterans with post-traumatic stress disorder (PTSD) can show impairments in executive control and increases in impulsivity. The current study examined the effects of PTSD on motor response inhibition, a key cognitive control function. A Go/NoGo task was administered to veterans with a diagnosis of PTSD based on semi-structured clinical interview using DSM-IV criteria (n = 40) and age-matched control veterans (n = 33). Participants also completed questionnaires to assess self-reported levels of PTSD and depressive symptoms. Performance measures from the patients (error rates and reaction times) were compared to those from controls. PTSD patients showed a significant deficit in response inhibition, committing more errors on NoGo trials than controls. Higher levels of PTSD and depressive symptoms were associated with higher error rates. Of the three symptom clusters, re-experiencing was the strongest predictor of performance. Because the co-morbidity of mild traumatic brain injury (mTBI) and PTSD was high in this population, secondary analyses compared veterans with PTSD+mTBI (n = 30) to veterans with PTSD only (n = 10). Although preliminary, results indicated the two patient groups did not differ on any measure (p > .88). Since cognitive impairments could hinder the effectiveness of standard PTSD therapies, incorporating treatments that strengthen executive functions might be considered in the future. (JINS, 2012, 18, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.CrossRefGoogle ScholarPubMed
Aupperle, R.L., Melrose, A.J., Stein, M.B., Paulus, M.P. (2012). Executive function and PTSD: Disengaging from trauma. Neuropharmacology, 62, 686694.CrossRefGoogle ScholarPubMed
Beck, A.T., Steer, R., Gabin, M. (1988). Psychometric properties of the BDI: Twenty-five years of evaluation. Clinical Psychological Review, 8, 77100.CrossRefGoogle Scholar
Belanger, H.G., Curtiss, G., Demery, J.A., Lebowitz, B.K., Vanderploeg, R.D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: A meta-analysis. Journal of the International Neuropsychological Society, 11, 215227.CrossRefGoogle ScholarPubMed
Blake, D.D., Weathers, F.W., Nagy, L.M., Kaloupek, D.G., Gusman, F.D., Charney, D.S., Keane, T.M. (1995). The development of a clinician-administered PTSD scale. Journal of Traumatic Stress, 8, 7590.Google ScholarPubMed
Blanchard, E.B., Jones-Alexander, J., Buckley, T.C., Forneris, C.A. (1996). Psychometric properties of the PTSD Checklist (PCL). Behaviour Research and Therapy, 34, 669673.CrossRefGoogle ScholarPubMed
Botvinick, M.M., Cohen, J.D., Carter, C.S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.CrossRefGoogle ScholarPubMed
Brenner, L.A., Terrio, H., Homaifar, B.Y., Gutierrez, P.M., Staves, P.J., Harwood, J.E., Warden, D. (2010). Neuropsychological test performance in soldiers with blast-related mild TBI. Neuropsychology, 24, 160167.CrossRefGoogle ScholarPubMed
Carlson, K.F., Kehle, S.M., Meis, L.A., Greer, N., Macdonald, R., Rutks, I., Wilt, T.J. (2011). Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder: A systematic review of the evidence. Journal of Head Trauma Rehabilitation, 26, 103115.CrossRefGoogle ScholarPubMed
Chambers, C.D., Garavan, H., Bellgrove, M.A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience and Biobehavioral Review, 33, 631646.CrossRefGoogle ScholarPubMed
Cloitre, M., Koenen, K.C., Gratz, K.L., Jakupcak, M. (2002). Differential diagnosis of PTSD in women. In R. Kimerling, P. Ouimette, & J. Wolfe (Eds.), Gender and PTSD (pp. 117–149). New York: Guilford Press.Google Scholar
Dimoska-Di Marco, A., McDonald, S., Kelly, M., Tate, R., Johnstone, S. (2011). A meta-analysis of response inhibition and Stroop interference control deficits in adults with traumatic brain injury (TBI). Journal of Clinical and Experimental Neuropsychology, 12, 115.Google Scholar
Donohoe, G., Reilly, R., Clarke, S., Meredith, S., Green, B., Morris, D., Robertson, I.H. (2006). Do antisaccade deficits in schizophrenia provide evidence of a specific inhibitory function? Journal of the International Neuropsychological Society, 12, 901906.CrossRefGoogle ScholarPubMed
Etkin, A., Wager, T.D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164, 14761488.CrossRefGoogle ScholarPubMed
Falconer, E., Bryant, R., Felmingham, K.L., Kemp, A.H., Gordon, E., Peduto, A., Williams, L.M. (2008). The neural networks of inhibitory control in posttraumatic stress disorder. Journal of Psychiatry & Neuroscience, 33, 413422.Google ScholarPubMed
Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I., Posner, M.I. (2005). The activation of attentional networks. Neuroimage, 26, 471479.CrossRefGoogle ScholarPubMed
Fisher, T., Aharon-Peretz, J., Pratt, H. (2011). Dis-regulation of response inhibition in adult Attention Deficit Hyperactivity Disorder (ADHD): An ERP study. Clinical Neurophysiology, 122, 23902399.CrossRefGoogle ScholarPubMed
Forbes, D., Creamer, M., Biddle, D. (2001). The validity of the PTSD checklist as a measure of symptomatic change in combat-related PTSD. Behaviour Research and Therapy, 39, 977986.CrossRefGoogle ScholarPubMed
Gordon, S.N., Fitzpatrick, P.J., Hilsabeck, R.C. (2011). No effect of PTSD and other psychiatric disorders on cognitive functioning in veterans with mild TBI. Clinical Neuropsychology, 25, 337347.CrossRefGoogle ScholarPubMed
Hamner, M.B., Lorberbaum, J.P., George, M.S. (1999). Potential role of the anterior cingulate cortex in PTSD: Review and hypothesis. Depression and Anxiety, 9, 114.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Hoge, C.W., Goldberg, H.M., Castro, C.A. (2009). Care of war veterans with mild traumatic brain injury--flawed perspectives. New England Journal of Medicine, 360, 15881591.CrossRefGoogle ScholarPubMed
Hoge, C.W., McGurk, D., Thomas, J.L., Cox, A.L., Engel, C.C., Castro, C.A. (2008). Mild traumatic brain injury in U.S. Soldiers returning from Iraq. New England Journal of Medicine, 358, 453463.CrossRefGoogle ScholarPubMed
Iversen, A.C., Fear, N.T., Ehlers, A., Hacker Hughes, J., Hull, L., Earnshaw, M., Hotopf, M. (2008). Risk factors for post-traumatic stress disorder among UK Armed Forces personnel. Psychological Medicine, 38, 511522.CrossRefGoogle ScholarPubMed
Jakupcak, M., Cook, J., Imel, Z., Fontana, A., Rosenheck, R., McFall, M. (2009). Posttraumatic stress disorder as a risk factor for suicidal ideation in Iraq and Afghanistan War veterans. Journal of Traumatic Stress, 22, 303306.CrossRefGoogle ScholarPubMed
Koso, M., Hansen, S. (2006). Executive function and memory in posttraumatic stress disorder: A study of Bosnian war veterans. European Psychiatry, 21, 167173.CrossRefGoogle ScholarPubMed
Kroes, M.C., Rugg, M.D., Whalley, M.G., Brewin, C.R. (2011). Structural brain abnormalities common to posttraumatic stress disorder and depression. Journal of Psychiatry & Neuroscience, 36, 256265.CrossRefGoogle ScholarPubMed
Larson, G.E., Booth-Kewley, S., Highfill-McRoy, R.M., Young, S.Y. (2009). Prospective analysis of psychiatric risk factors in marines sent to war. Military Medicine, 174, 737744.CrossRefGoogle ScholarPubMed
Leskin, L.P., White, P.M. (2007). Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology, 21, 275284.CrossRefGoogle ScholarPubMed
Lew, H.L., Amick, M.M., Kraft, M., Stein, M.B., Cifu, D.X. (2010). Potential driving issues in combat returnees. Neurorehabilitation, 26, 271278.CrossRefGoogle Scholar
Li, C.S., Huang, C., Constable, R.T., Sinha, R. (2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26, 186192.Google Scholar
Lippa, S.M., Pastorek, N.J., Benge, J.F., Thornton, G.M. (2010). Postconcussive symptoms after blast and nonblast-related mild traumatic brain injuries in Afghanistan and Iraq war veterans. Journal of the International Neuropsychological Society, 16, 856866.CrossRefGoogle ScholarPubMed
Mathias, J.L., Beall, J.A., Bigler, E.D. (2004). Neuropsychological and information processing deficits following mild traumatic brain injury. Journal of the International Neuropsychological Society, 10, 286297.CrossRefGoogle ScholarPubMed
Marx, B.P., Brailey, K., Proctor, S.P., Macdonald, H.Z., Graefe, A.C., Amoroso, P., Vasterling, J.J. (2009). Association of time since deployment, combat intensity, and posttraumatic stress symptoms with neuropsychological outcomes following Iraq war deployment. Archives of General Psychiatry, 66, 9961004.CrossRefGoogle ScholarPubMed
Matthews, S.C., Strigo, I.A., Simmons, A.N., O'Connell, R.M., Reinhardt, L.E., Moseley, S.A. (2011). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage, 54, S69S75.CrossRefGoogle ScholarPubMed
Mac Donald, C.L., Johnson, A.M., Cooper, D., Nelson, E.C., Werner, N.J., Shimony, J.S., Brody, D.L. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. New England Journal of Medicine, 364, 20912100.CrossRefGoogle ScholarPubMed
McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46, 26682682.CrossRefGoogle ScholarPubMed
McNally, R.J., Kaspi, S.P., Riemann, B.C., Zeitlin, S.B. (1990). Selective processing of threat cues in posttraumatic stress disorder. Journal of Abnormal Psychology, 99, 398402.CrossRefGoogle ScholarPubMed
Miller, E.K., Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Morey, R.A., Petty, C.M., Cooper, D.A., Labar, K.S., McCarthy, G. (2008). Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans. Psychiatry Research, 162, 5972.CrossRefGoogle ScholarPubMed
Mostofsky, S.H., Simmonds, D.J. (2008). Response inhibition and response selection: Two sides of the same coin. Journal of Cognitive Neuroscience, 20, 751761.CrossRefGoogle ScholarPubMed
Nee, D.E., Wager, T.D., Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7, 117.CrossRefGoogle ScholarPubMed
Nelson, L.A., Yoash-Gantz, R.E., Pickett, T.C., Campbell, T.A. (2009). Relationship between processing speed and executive functioning performance among OEF/OIF veterans: Implications for postdeployment rehabilitation. Journal of Head Trauma Rehabilitation, 24, 3240.CrossRefGoogle ScholarPubMed
Patton, J.H., Stanford, M.S., Barratt, E.S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Petrides, M. (1986). The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. Journal of Neuroscience, 6, 20542063.CrossRefGoogle ScholarPubMed
Picton, P.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826838.CrossRefGoogle ScholarPubMed
Qureshi, S.U., Long, M.E., Bradshaw, M.R., Pyne, J.M., Magruder, K.M., Kimbrell, T., Kunik, M.E. (2011). Does PTSD impair cognition beyond the effect of trauma? Journal of Neuropsychiatry and Clinical Neurosciences, 23, 1628.CrossRefGoogle ScholarPubMed
Rauch, S.L., Shin, L.M., Segal, E., Pitman, R.K., Carson, M.A., McMullin, K., Makris, N. (2003). Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport, 14, 913916.Google ScholarPubMed
Rentrop, M., Backenstrass, M., Jaentsch, B., Kaiser, S., Roth, A., Unger, J., Renneberg, B. (2008). Response inhibition in borderline personality disorder: Performance in a Go/Nogo task. Psychopathology, 41, 5057.CrossRefGoogle Scholar
Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747758.CrossRefGoogle ScholarPubMed
Romesser, J., Shen, S., Reblin, M., Kircher, J., Allen, S., Roberts, T., Marchand, W.R. (2011). A preliminary study of the effect of a diagnosis of concussion on PTSD symptoms and other psychiatric variables at the time of treatment seeking among veterans. Military Medicine, 176, 246252.CrossRefGoogle ScholarPubMed
Shin, L.M., Rauch, S.L., Pitman, R.K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of the New York Academy of Sciences, 1071, 6779.CrossRefGoogle ScholarPubMed
Sigford, B., Cifu, D.X., Vanderploeg, R. (2009). Care of war veterans with mild traumatic brain injury. New England Journal of Medicine, 361, 536; author reply 537–538.Google ScholarPubMed
Simmons, A.N., Matthews, S.C. (2012). Neural circuitry of PTSD with or without mild traumatic brain injury: A meta-analysis. Neuropharmacology, 62, 598606.CrossRefGoogle ScholarPubMed
Stein, M.B., McAllister, T.W. (2009). Exploring the convergence of posttraumatic stress disorder and mild traumatic brain injury. American Journal of Psychiatry, 166, 768776.CrossRefGoogle ScholarPubMed
Swick, D., Ashley, V., Turken, A.U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102.CrossRefGoogle ScholarPubMed
Swick, D., Ashley, V., Turken, A.U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage, 56, 16551665.CrossRefGoogle Scholar
Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 99, 16354–16359.CrossRefGoogle Scholar
The Management of Concussion/mTBI Working Group (2009). VA/DOD clinical practice guideline for management of concussion/mild traumatic brain injury (mTBI). Journal of Rehabilitation Research Development, 46, CP1CP68.CrossRefGoogle Scholar
Vasterling, J.J., Brailey, K., Constans, J.I., Sutker, P.B. (1998). Attention and memory dysfunction in posttraumatic stress disorder. Neuropsychology, 12, 125133.CrossRefGoogle ScholarPubMed
Vasterling, J.J., Verfaellie, M. (2009). Introduction-posttraumatic stress disorder: A neurocognitive perspective. Journal of the International Neuropsychological Society, 15, 826829.CrossRefGoogle ScholarPubMed
Vasterling, J.J., Verfaellie, M., Sullivan, K.D. (2009). Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: Perspectives from cognitive neuroscience. Clinical Psychology Review, 29, 674684.CrossRefGoogle ScholarPubMed
Vrana, S.R., Roodman, A., Beckham, J.C. (1995). Selective processing of trauma-relevant words in posttraumatic stress disorder. Journal of Anxiety Disorders, 9, 515530.CrossRefGoogle Scholar
Weathers, F.W., Litz, B.T., Huska, J.A., Keane, T.M. (1994). PTSD Checklist—Military Version (PCL-M) for DSM-IV. Boston: National Center for PTSD—Behavioral Science Division.Google Scholar
Wechsler, D. (2001). Wechsler Test of Adult Reading. San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
Whyte, J., Grieb-Neff, P., Gantz, C., Polansky, M. (2006). Measuring sustained attention after traumatic brain injury: Differences in key findings from the sustained attention to response task (SART). Neuropsychologia, 44, 20072014.CrossRefGoogle ScholarPubMed
Woodward, S.H., Kaloupek, D.G., Streeter, C.C., Martinez, C., Schaer, M., Eliez, S. (2006). Decreased anterior cingulate volume in combat-related PTSD. Biological Psychiatry, 59, 582587.CrossRefGoogle ScholarPubMed
Wu, J., Ge, Y., Shi, Z., Duan, X., Wang, L., Sun, X., Zhang, K. (2010). Response inhibition in adolescent earthquake survivors with and without posttraumatic stress disorder: A combined behavioral and ERP study. Neuroscience Letters, 486, 117121.CrossRefGoogle ScholarPubMed
Zheng, D., Oka, T., Bokura, H., Yamaguchi, S. (2008). The key locus of common response inhibition network for no-go and stop signals. Journal of Cognitive Neuroscience, 20, 14341442.CrossRefGoogle Scholar