Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:26:23.835Z Has data issue: false hasContentIssue false

Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications

Published online by Cambridge University Press:  20 March 2007

GREGORY G. BROWN
Affiliation:
Psychology Service, VA San Diego Healthcare System, San Diego, California Department of Psychiatry, University of California San Diego, San Diego, California
CAMELLIA CLARK
Affiliation:
Department of Psychiatry, University of California San Diego, San Diego, California
THOMAS T. LIU
Affiliation:
Department of Radiology, University of California San Diego, San Diego, California

Abstract

Arterial spin labeling (ASL) uses magnetic resonance imaging methods to measure cerebral blood flow (CBF) non-invasively. ASL CBF validly localizes brain function and may be especially useful for studies where the time frame of behavioral change is more than a few minutes, such as in longitudinal and treatment studies. ASL measures of cerebral perfusion are highly accurate in detecting lesion laterality in temporal lobe epilepsy, stenotic-occlusive disease, and brain tumors. Among lesioned patients, ASL CBF has excellent concurrent validity when correlated with CBF measured by Positron Emission Tomography or with dynamic susceptibility-weighted magnetic resonance. ASL CBF can predict tumor grading in vivo and can predict six-month response to the surgical treatment of brain tumors. ASL's capability to selectively and non-invasively tag flow in major vessels may refine the monitoring of treatment of cerebrovascular disease and brain tumors. Conclusions about the utility of ASL are limited by the small sample sizes of the studies currently in the literature and by the uncertainty caused by the effect of brain disease on transit times of the magnetic tag. As the method evolves, ASL techniques will likely become more widely used in clinical research and practice. (JINS, 2007, 13, 526–538.)

Type
CRITICAL REVIEW
Copyright
© 2007 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre, G.K., Detre, J.A., Zarahn, E., & Alsop, D.C. (2002). Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage, 15, 488500.Google Scholar
Alsop, D.C. (2005). Perfusion imaging of the brain: Contribution to clinical MRI. In R.R. Edelman, J.R. Hesselink, M.B. Zlatkin, & J.V. Crues III (Eds.). Clinical magnetic resonance imaging (3rd ed.). Vol. 1 (pp. 333357). Philadelphia, PA: Saunders Elsevier.
Alsop, D.C., Detre, J.A., & Grossman, M. (2000). Assessment of cerebral blood flow in Alzheimer's disease by spin-labeled magnetic resonance imaging. Annals of Neurology, 47, 93100.Google Scholar
Ances, B.M., McGarvey, M.L., Abrahams, J.M., Maldjian, J.A., Alsop, D.C., Zager, E.L., & Detre, J.A. (2004). Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. Journal of Neuroimaging, 14, 133138.Google Scholar
Ances, B.M., Roc, A.C., Wang, J., Korczykowski, M., Okawa, J., Stern, J., Kim, J., Wolf, R., Lawler, K., Kolson, D.L., & Detre, J.A. (2006). Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66, 862866.Google Scholar
Bartsch, A.J., Homola, G., Biller, A., Solymosi, L., & Bendszus M. (2006). Diagnostic functional MRI: Illustrated clinical applications and decision-making. Journal of Magnetic Resonance Imaging, 23, 921932.Google Scholar
Bonita, R. & Beaglehole, R. (1988). Modification of Rankin Scale: Recovery of motor function after stroke. Stroke, 19, 14971500.Google Scholar
Breier, J.I., Mullani, N.A., Thomas, A.B., Wheless, J.W., Plenger, P.M., Gould, K.L., Papanicolaou, A., & Willmore, L.J. (1997). Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology, 48, 10471053.Google Scholar
Brown, G.G., Eyler Zorrilla, L.T., Georgy, B., Kindermann, S.S., Wong, E.C., & Buxton, R.B. (2003). BOLD and perfusion response to finger-thumb apposition following acetazolamide administration: Differential relationship to global perfusion. Journal of Cerebral Blood Flow and Metabolism, 23, 829837.Google Scholar
Buchsbaum, M.S., Wu, J.C., Siegel, B.W., Hackett, E., Trenary, M., Abel, L., & Reynolds, C. (1997). Effect of sertraline on regional metabolic rate in patients with affective disorders. Biological Psychiatry, 41, 1522.Google Scholar
Buxton, R.B., Frank, L.R., Wong, E.C., Siewert, B., Warach, S., & Edelman, R.R. (1998). A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic Resonance in Medicine, 40, 383396.Google Scholar
Calamante, F., Thomas, D.L., Pell, G.S., Wiersma, J., & Turner, R. (1999). Measuring cerebral blood flow using magnetic resonance imaging techniques. Journal of Cerebral Blood Flow and Metabolism, 19, 701735.Google Scholar
Chalela, J.A., Alsop, D.C., Gonzalez-Atavales, J.B., Maldjian, A.A., Kasner, S.E., & Detre, J.A. (2000). Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke, 31, 680687.Google Scholar
Clark, C.P., Brown, G.G., Archibald, S.L., Fennema-Notestine, C., Braun, D.R., Thomas, L.S., Sutherland, A.N., & Gillin, J.C. (2006a). Does amygdalar perfusion correlate with antidepressant response to partial sleep deprivation in major depression? Psychiatry Research: Neuroimaging, 146, 4351.Google Scholar
Clark, C.P., Brown, G.G., Frank, L., Thomas, L., Sutherland, A., & Gillin, J.C. (2006b). Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI. Psychiatry Research: Neuroimaging, 146, 213222Google Scholar
Clark, C.P., Brown, G.G., Eyler, L.T., Drummond, S.P.A., Braun, D.R., & Tapert, S.F., (in press). Decreased perfusion in young alcohol-dependent women as compared with age-matched controls. American Journal of Drug and Alcohol Abuse.
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
Cosottini, M., Pingitore, A., Michelassi, M.C., Puglioli, M., Lazzarotti, G., Caniglia, M., Parenti, G., & Bartolozzi, C. (2005). Redistribution of cerebropetal blood flow in patients with carotid artery stenosis measured non-invasively with fast cine phase contrast MR angiography. European Radiology, 15, 3440.Google Scholar
Davis, T.L., Kwong, K.K., Weisskoff, R.M., & Rosen, B.R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences USA, 95, 18341839.Google Scholar
Demir, B., Ulug, B., Lay, E.E., & Erbas, B. (2002). Regional cerebral blood flow and neuropsychological functioning in early and late onset alcoholism. Psychiatry Research, 115, 115125.Google Scholar
Detre, J.A., Leigh, J.S., Williams, D.S., & Koretsky, A.P. (1992). Perfusion imaging. Magnetic Resonance in Medicine, 23, 3745.Google Scholar
Detre, J.A., Alsop, D.C., Vives, L.R., Maccotta, L., Teener, J.W., & Raps, E.C. (1998). Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology, 50, 633641.Google Scholar
Drevets, W.C., Bogers, W., & Raichle, M.E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology, 12, 527544.Google Scholar
Duncan, J.S. (1997). Imaging and epilepsy. Brain, 120 (pt. 2), 339377.Google Scholar
Ewing, J.R., Robertson, W.M., Brown, G.G., & Welch, K.M.A. (1987). 133Xenon inhalation: Accuracy in detection of ischemic cerebral regions and angiographic lesions. In J.H. Wood (Ed.), Cerebral blood flow: Physiologic and clinical aspects (pp. 202219). New York: McGraw-Hill Company.
Fink, G.R., Pawlik, G., Stefan, H.J., Pietrzyk, U., Wienhard, K., & Heiss, W.D. (1996). Temporal lobe epilepsy: Evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. The Journal of Neuroscience, 137, 2834.Google Scholar
Floyd, T.F., McGarvey, M., Ochroch, E.A., Cheung, A.T., Augoustides, J.A., Bavaria, J.E., Acker, M.A., Pochettino, A., & Detre, J.A. (2003). Perioperative changes in cerebral blood flow after cardiac surgery: Influence of anemia and aging. The Annals of Thoracic Surgery, 76, 20372042.Google Scholar
Franck, G., Salmon, E., Sadzot, B., & Maquet, P. (1989). Epilepsy: The use of oxygen-15-labeled gases. Seminars in Neurology, 9, 307316.Google Scholar
Garraux, G., Hallet, M., & Talagala, S.L. (2005). CASL fMRI of subcortico-cortical perfusion changes during memory-guided finger sequences. NeuroImage, 25, 122132.Google Scholar
Gazdzinski, S., Durazzo, T.C., Jahng, G-H., Ezekiel, F., Banys, P., & Meyerhoff, D.J. (2006). Effects of chronic alcohol dependence and chronic cigarette smoking on cerebral perfusion: A preliminary magnetic resonance study. Alcoholism: Clinical and Experimental Research, 30, 947958.Google Scholar
Gibbs, J.M., Wise, R.J., Thomas, D.J., Mansfield, A.O., & Russell, R.W. (1987). Cerebral haemodynamic changes after extracranial-intracranial bypass surgery. Journal of Neurology, Neurosurgery, and Psychiatry, 50, 140150.Google Scholar
Gollub, R.L., Breiter, H.C., Kantor, H., Kennedy, D., Gastfriend, D., Mathew, R.T., Makris, N., Guimaraes, A., Riorden, J., Campbell, T., Foley, M., Hyman, S.E., Rosen, B., & Weisskoff, R. (1998). Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. Journal of Cerebral Blood Flow and Metabolism, 18, 724734.Google Scholar
Gottschalk, P.C. & Kosten, T.R. (2002). Cerebral perfusion defects in combined cocaine and alcohol dependence. Drug and Alcohol Dependence, 68, 95104.Google Scholar
Hendrikse, J., van Osch, M.J., Rutgers, D.R., Bakker, C.J., Kappelle, L.J., Golay, X., & van der Grond, J. (2004). Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology, 233, 899904.Google Scholar
Hendrikse, J., van der Zwan, A., Ramos, L.M.P., van Osch, M.J.P., Golay, X., Tulleken, C.A.F., & van der Grond, J. (2005). Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery, 57, 486494.Google Scholar
Henry, T.R., Engel, J., Jr., & Mazziotta, J.C. (1993). Clinical evaluation of interictal fluorine-18-fluorodeoxyglucose PET in partial epilepsy. Journal of Nuclear Medicine, 34, 18921898.Google Scholar
Hoge, R.D., Franceschini, M.A., Covolan, R.J.M., Huppert, T., Mandeville, J.B., & Boas, D.A. (2005). Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI. NeuroImage, 25, 701707.Google Scholar
Huppert, T.J., Hoge, R.D., Diamond, S.G., Franceschini, M.A., & Boas, D.A. (2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage, 29, 368382.Google Scholar
Ingvar, M. (1986). Cerebral blood flow and metabolic rate during seizures. Relationship to epileptic brain damage. Annals of the New York Academy of Sciences, 462, 194206.Google Scholar
Johnson, N.A., Jahng, G.H., Weiner, M.W., Miller, B.L., Chui, H.C., Jagust, W.J., Gorno-Tempini, M.L., & Schuff, N. (2005). Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology, 234, 851859.Google Scholar
Jones, C.E., Wolf, R.L., Detre, J.A., Bas, B., Saha, P.K., Wang, J., Gorno-Tempini, N., & Schuff, N. (2006). Structural MRI of carotid artery atherosclerotic lesion burden and characterization of hemispheric cerebral blood flow before and after carotid endarterectomy. NMR in Biomedicine, 19, 198208.Google Scholar
Kemeny, S., Ye, F.Q., Birn, R., & Braun, A.R. (2005). Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Human Brain Mapping, 24, 173183.Google Scholar
Kim, J.H., Lee, E.J., Lee, S.J., Choi, N.C., Lim, B.H., & Shin, T. (2002). Reliability of perfusion MR imaging in symptomatic carotid occlusive disease. Cerebral blood volume, mean transit time and time-to-peak. Acta Radiologica, 43, 360364.Google Scholar
Kim, J., Whyte, J., Wang, J., Rao, H., Tang, K.Z., & Detre, J.A. (2006). Continuous ASL perfusion fMRI investigation of higher cognition: Quantification of tonic CBF changes during sustained attention and working memory tasks. NeuroImage, 31, 376385.Google Scholar
Kimura, H., Kado, H., Koshimoto, Y., Tsuchida, T., Yonekura, Y., & Itoh, H. (2005). Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: A correlative study with CO2 PET validation. Journal of Magnetic Resonance Imaging, 22, 189198.Google Scholar
Krishnan, B.A., Talley, B.J., Slavin, M.J., Doraiswamy, P.M., & Petrella, J.M. (2005). Current status of functional MR imaging, perfusion-weighted imaging, and diffusion-tensor imaging in Alzheimer's disease diagnosis and research. Neuroimaging Clinics of North America, 15, 853868Google Scholar
Kuhl, D.E., Engel, J., Phelps, M.E., & Selin, C. (1980). Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18 FDG and 13N-H3. Annals of Neurology, 8, 348360.Google Scholar
Law, M., Oh., S., Johnson, G., Babb, J.S., Zagzag, D., Golfinos, J., & Kelly, P.J. (2006). Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: A second reference standard in the surgical and non-surgical treatment of low-grade gliomas. Neurosurgery, 58, 10991107.Google Scholar
Li, T-Q., Haefelin, T.N., Chan, B., Kastrup, A., Jonsson, T., Glover, G.H., & Moseley, M.E. (2000). Assessment of hemodynamic response during focal neural activity in human using bolus tracking, arterial spin labeling and BOLD techniques. NeuroImage, 12, 442451.Google Scholar
Liu, H.-L., Kochunov, P., Hou, J., Pu, Y., Mahankali, S., Feng, C.-H., Yee, S.H., Wan, Y.L., Fox, P.T., & Gao, J.H. (2001). Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: Comparison with H215O PET measurements. Magnetic Resonance in Medicine, 45, 431435.Google Scholar
Liu, T.T. & Brown, G.G. (2007, this issue). Measurement of cerebral perfusion in arterial spin labeling: Part 1. Methods. Journal of International Neuropsychology, 13, 517525.Google Scholar
London, E.D., Cascella, N.G., Wong, D.F., Phillips, R.L., Daniels, R.F., Links, J.M., Herning, R., Grayson, R., Jaffe, J.H., & Wagner, H.N. (1990). Cocaine-induced reduction of glucose utilization in human brain. Archives of General Psychiatry, 47, 567574.Google Scholar
Love, T., Swinney, D., Wong, E., & Buxton, R. (2002). Perfusion imaging and stroke: A more sensitive measure of the brain bases of cognitive deficits. Aphasiology, 16, 873883.Google Scholar
Marshall, R.S., Lazar, R.M., Young, W.L., Solomon, R.A., Joshi, S., Duong, D.H., & Rundek, T., & Pile-Spellman, J. (2002). Clinical utility of quantitative cerebral blood flow measurements during internal carotid artery test occlusions. Neurosurgery, 50, 9961004.Google Scholar
Matsumoto, K., Urano, M., Hirai, M., Masaki, H., Tenjin, H., & Mineura, K. (2000). Haemodynamic evaluation of cerebral arteriovenous malformations by quantification of transit time using high speed digital subtraction angiography: Basic considerations. Journal of Clinical Neuroscience, 7, 3941.Google Scholar
Mayberg, H.S., Liotti, M., Brannan, S.K., McGinnis, S., Mahurin, R.K., Jerabek, P.A., Silva, J.A., Tekell, J.L., Martin, C.C., Lancaster, J.L., & Fox, P.T. (1999). Reciprocal limbic-cortical function & negative mood: Converging PET findings in depression & normal sadness. American Journal of Psychiatry, 156, 675682.Google Scholar
Mildner, T., Zysset, S., Trampel, R., Driesel, W., & Möller, H.E. (2005). Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI. NeuroImage, 27, 919926.Google Scholar
Moselhy, H.F., Georgiou, G., & Kahn, A. (2001). Frontal lobe changes in alcoholism: A review of the literature. Alcohol and Alcoholism, 36, 357368.Google Scholar
Rao, S.M., Salmeron, B.J., Durgerian, S., Janowiak, M., Fischer, M., Risinger, R.C., Conant, L.L., & Stein, E.A. (2000). Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. American Journal of Psychiatry, 157, 16971699.Google Scholar
Restom, K., Behzadi, Y., & Liu T.T. (2006). Physiological noise reduction for arterial spin labeling functional MRI. NeuroImage, 31, 11041115.Google Scholar
Sandson, T.A., O'Connor, M., Sperling, R.A., Edelman, R.R., & Warach, S. (1996). Noninvasive perfusion MRI in Alzheimer's disease: A preliminary report. Neurology, 47, 13391342.Google Scholar
Siewert, B., Schlaug, G., Edelman, R.R., & Warach, S. (1997). Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology, 48, 673679.Google Scholar
Stefanovic, B., Warnking, J.M., Kobayashi, E., Bagshaw, A.P., Hawco, C., Dubeau, F., Gotman, J., & Pike, G.B. (2005). Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. NeuroImage, 28, 205215.Google Scholar
Strouse, J.J., Cox, C.S., Melhem, E.R., Hanzhang, L., Kraut, M.A., Razumovsky, A., Yohay, K., van Zijl, P.C., & Casella, J.F. (2006). Inverse correlation between cerebral blood flow measured by continuous arterial spin-labeling (CASL) MRI and neurocognitive function in children with sickle cell anemia (SCA). Blood, 108, 379381.Google Scholar
Tjandra, T., Brooks, J.C.W., Figueriredo, P., Wise, R., Matthews, P.M., & Tracey, I. (2005). Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. NeuroImage, 27, 393401.Google Scholar
Tsuchiya, K., Katase, S., Hachiya, J., Kimura, T., & Yodo, K. (2000). Cerebral perfusion MRI with arterial spin labeling technique at 0.5 Tesla. Journal of Computer Assisted Tomography, 24, 124127.Google Scholar
Wang, J., Aguirre, G.K., Kimberg, D.Y., Roc, A.C., Li, L., & Detre, J.A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796802.Google Scholar
Wang, J. & Licht, D.J. (2006). Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clinics of North America, 16, 149167.Google Scholar
Wang, J., Rao, H., Wetmore, G.S., Furlan, P.M., Korczykowski, M., Dinges, D.F., & Detre, J.A. (2005). Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proceedings of the National Academy of Sciences, U S A, 102, 1780417809.Google Scholar
Warmuth, C., Gunther, M., & Zimmer, C. (2003). Quantification of blood flow in brain tumors: Comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology, 228, 523532.Google Scholar
Weber, M.A., Gunther, M., Lichy, M.P., Delorme, S., Bongers, A., Thilmann, C., Essig, M., Zuna, I., Schad, L.R., Debus, J., & Schlemmer, H.P. (2003). Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Investigative Radiology, 38, 712718.Google Scholar
Weber, M.A., Thilmann, C., Lichy, M.P., Gunther, M., Delorme, S., Zuna, I., Bongers, A., Schad, L.R., Debus, J., Kauczor, H.U., Essig, M., & Schlemmer, H.P. (2004). Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: Initial results. Investigative Radiology, 39, 277287.Google Scholar
Weber, M.A., Zoubaa, S., Schlieter, M., Juttler, E., Huttner, H.B., Geletneky, K., Ittrich, C., Lichy, M.P., Kroll, A., Debus, J., Giesel, F.L., Hartmann, M., & Essig, M. (2006). Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology, 66, 18991906.Google Scholar
Weinand, M. & Carter, L. (1994). Surface cortical cerebral blood flow monitoring and single photon emission computed tomography: Prognostic factors for selecting temporal lobectomy candidates. Seizure, 3, 5559.Google Scholar
Wintermark, M., Sesay, M., Barbier, E., Borbely, K., Dillon, W.P., Eastwood, J.D., Glenn, T.C., Grandin, C.B., Pedraza, S., Soustiel, J.F., Nariai, T., Zaharchuk, G., Caille, J.M., Dousset, V., & Yonas, H. (2005). Comparative overview of brain perfusion imaging techniques. Journal of Neuroradiology, 32, 294314.Google Scholar
Wolf, R.L., Alsop, D.C., Levy-Reis, I., Meyer, P.T., Maldjian, J.A., Gonzalez-Atavales, J., French, J.A., Alavi, A., & Detre, J.A. (2001). Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. American Journal of Neuroradiology, 22, 11341341.Google Scholar
Wolf, R.L., Wang, J., Wang, S., Melhem, E.R., O'Rourke, D.M., Judy, K.D., & Detre, J.A. (2005). Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. Journal of Magnetic Resonance Imaging, 22, 475482.Google Scholar
Wong, E.C., Buxton, R.B., & Frank, L.R. (1998). Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magnetic Resonance in Medicine, 39, 702708.Google Scholar
Wong, E.C., Cronin, M., Wu, W.C., Inglis, B., Frank, L.R., & Liu, T.T. (2006). Velocity-selective arterial spin labeling. Magnetic Resonance in Medicine, 55, 13341341.Google Scholar
Wu, J., Buchsbaum, M.S., Gillin, J.C., Tang, C., Cadwell, S., Wiegand, M., Najafi, A., Klein, E., Hazen, K., Bunney, W.E., Jr, Fallon, J.H., & Keator, D. (1999). Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate & medial prefrontal cortex. American Journal of Psychiatry, 156, 11491158.Google Scholar
Yamauchi, H., Fukuyama, H., Nagahama, Y., Nabatame, H., Nakamura, K., Yamamoto, Y., Yonekura, Y., Konishi, J., & Kimura, J. (1996). Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. Journal of Neurology, Neurosurgery, and Psychiatry, 61, 1825.Google Scholar
Ye, F.Q., Smith, A.M., Mattay, V.S., Ruttimann, U.E., Frank, J.A., Weinberger, D.R., & McLaughlin, A.C. (1998). Quantitation of regional cerebral blood flow increases in prefrontal cortex during a working memory task: A steady-state arterial spin-tagging study. NeuroImage, 8, 4449.Google Scholar
Yee, S-H., Liu, H-L., Hou, J., Pu, Y., Fox, P.T., & Gao, J-H. (2000). Detection of the brain response during a cognitive task using perfusion-based event-related functional fMRI. Neuro Report, 11, 25332536.Google Scholar
Yongbi, M.N., Fera, F., Yang, Y., Frank, J.A., & Duyn, J.H. (2002). Pulsed arterial spin labeling: Comparison of multisection baseline and functional MR imaging perfusion signal at 1.5 and 3.0 T: Initial results in six subjects. Radiology, 222, 569575.Google Scholar