Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T14:51:49.811Z Has data issue: false hasContentIssue false

Neuropsychological Alterations in Narcolepsy with Cataplexy and the Expression of Cognitive Deficits

Published online by Cambridge University Press:  12 December 2019

Pablo Medrano-Martinez
Affiliation:
Department of Psychobiology and Behavioral Sciences Methodology, Faculty of Psychology, University Complutense of Madrid, Madrid28223, Spain
Rosa Peraita-Adrados*
Affiliation:
Sleep and Epilepsy Unit – Clinical Neurophysiology Service, University General Hospital Gregorio Marañón, Research Institute Gregorio Marañón, University Complutense of Madrid, Madrid28007, Spain
*
*Correspondence and reprint requests to: Rosa Peraita-Adrados MD, PhD, Sleep and Epilepsy Unit – Clinical Neurophysiology Service, University General Hospital Gregorio Marañón, Research Institute Gregorio Marañón, University Complutense of Madrid (UCM), C/ Dr. Esquerdo, 46, Madrid 28007, Spain. Phone: +34 616070310; Fax: +34 91 5868018. E-mail: rosa-peraita@telefonica.net

Abstract

Objectives:

The objective of our study was to assess attention processes and executive function in patients with narcolepsy with cataplexy (NT1). To do so, we compared the results with those of a control group from the general population using an extensive neuropsychological test battery.

Methods:

We studied 28 patients with NT1 and 28 healthy control participants matched for age, gender, and educational level. They all completed questionnaires on sleepiness, anxiety, and depression symptoms. In addition, they underwent neuropsychological tests. The ability to maintain attention was assessed using three computer tasks with different levels of complexity.

Results:

Patients had significantly more daytime sleepiness than controls. A significant negative correlation between depression and disease duration was found in NT1 patients. The results of the anxiety questionnaire correlated with the presence of sleep paralysis. There were significant differences in information processing speed subtasks. Patients made significantly more omissions and generally reacted slower and more variably than controls in computerized tasks. As for executive function, patients performed worse in phonologic fluency tasks than controls. However, when the influence of processing speed on fluency tasks was statistically controlled, part of this significant difference disappeared.

Conclusions:

Our results indicate that the negative correlation between depression and disease duration probably reflects progressive adaptation to the functional burden of the disease. Information processing speed plays a fundamental role in the expression of cognitive deficits. We emphasized the need to control the influence of processing speed and sustained attention in the neuropsychological assessment of NT1 patients.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AIBT (1944). Army Individual Test Battery. Manual of directions and scoring. Washington, DC: War Department, Adjuntant General’s Office.Google Scholar
American Academy of Sleep Medicine (2014). International Classification of Sleep Disorders: Diagnostic and Coding Manual. (3rd ed.). Westchester: American Academy of Sleep MedicineGoogle Scholar
Bayard, S., Croisier Langenier, M., Cochen De Cock, V., Scholz, S., & Dauvilliers, Y. (2012). Executive control of attention in narcolepsy. PloS One, 7(4), e33525. doi: 10.1371/journal.pone.0033525CrossRefGoogle ScholarPubMed
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). BDI-II. Beck Depression Inventory (2nd ed.). Manual, Vol. 78). San Antonio, TX: The Psychological Corporation.Google Scholar
Benton, L.A., Hamsher, K.D., & Sivan, A.B. (1994). Controlled oral word association test. Multilingual Aphasia Examination. Iowa: University of Iowa.Google Scholar
Broughton, R., Ghanem, Q., Hishikawa, Y., Sugita, Y., Nevsimalova, S., & Roth, B. (1981). Life effects of narcolepsy in 180 patients from North America, Asia and Europe compared to matched controls. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 8(4), 299304.CrossRefGoogle ScholarPubMed
Buela-Casal, G., Guillén-Riquelme, A., & Seisdedos Cubero, N. (2011). Cuestionario de Ansiedad Estado-Rasgo: Adaptación Española (8a ed). Madrid: TEA Ediciones.Google Scholar
Dang, R., Chen, Q., Song, J., He, C., Zhang, J., Xia, J., & Hu, Z. (2018). Orexin knockout mice exhibit impaired spatial working memory. Neuroscience Letters, 668, 9297. https://doi.org/10.1016/j.neulet.2018.01.013CrossRefGoogle ScholarPubMed
Delazer, M., Högl, B., Zamarian, L., Wenter, J., Gschliesser, V., Ehrmann, L., Brandauer, E., Cevikkol, Z., & Frauscher, B. (2011). Executive functions, information sampling, and decision making in narcolepsy with cataplexy. Neuropsychology, 25(4), 477487. doi: 10.1037/a0022357CrossRefGoogle ScholarPubMed
De Lecea, L., Kilduff, T.S., Peyron, C., Gao, X.-B., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L.F., Gautvik, V.T., Bartlett, F.S. 2nd, & Frankel, W.N. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences, 95(1), 322327.CrossRefGoogle ScholarPubMed
Denis, D., French, C.C., & Gregory, A.M. (2018). A systematic review of variables associated with sleep paralysis. Sleep Medicine Reviews, 38, 141157. doi: 10.1016/j.smrv.2017.05.005CrossRefGoogle ScholarPubMed
De Zambotti, M., Pizza, F., Covassin, N., Vandi, S., Cellini, N., Stegagno, L., & Plazzi, G. (2014). Facing emotions in narcolepsy with cataplexy: Haemodynamic and behavioural responses during emotional stimulation. Journal of Sleep Research, 23(4), 432440. doi: 10.1111/jsr.12133CrossRefGoogle ScholarPubMed
Fadel, J. & Burk, J.A. (2010). Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Research, 1314, 112123. doi: 10.1016/j.brainres.2009.08.046CrossRefGoogle ScholarPubMed
Ferguson, C.J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532. doi: 10.1037/a0015808CrossRefGoogle Scholar
Filardi, M., Pizza, F., Tonetti, L., Antelmi, E., Natale, V., & Plazzi, G. (2017). Attention impairments and ADHD symptoms in adult narcoleptic patients with and without hypocretin deficiency. PLoS ONE, 12(8), 112. doi: 10.1371/journal.pone.0182085CrossRefGoogle ScholarPubMed
Fisk, A.D. & Schneider, W. (1981). Control and automatic processing during tasks requiring sustained attention: A new approach to vigilance. Human Factors, 23(6), 737750.CrossRefGoogle Scholar
Fisk, J.E. & Sharp, C.A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874890.CrossRefGoogle Scholar
Friedman, N.P. & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101135. doi: 10.1037/0096-3445.133.1.101CrossRefGoogle ScholarPubMed
Golden, C.J. (2007). Stroop Test de Colores y Palabras (5a ed). Madrid: TEA Ediciones.Google Scholar
Hor, H., Bartesaghi, L., Kutalik, Z., Vicario, J.L., de Andres, C., Pfister, C., Lammers, G.J., Guex, N., Chrast, R., Tafti, M., & Peraita-Adrados, R. (2011). A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. American Journal of Human Genetics, 89(3), 474479. doi: 10.1016/j.ajhg.2011.08.007CrossRefGoogle ScholarPubMed
Izquierdo-Vicario, Y., Ramos-Platón, M.-J., Conesa-Peraleja, D., Lozano-Parra, A.B., & Espinar-Sierra, J. (1997). Epworth Sleepiness Scale in a sample of the Spanish population. Sleep, 20(8), 676677.Google Scholar
Johns, M.W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540545.CrossRefGoogle ScholarPubMed
Kales, A., Soldatos, C.R., Bixler, E.O., Caldwell, A., Cadieux, R.J., Verrechio, J.M., & Kales, J.D. (1982). Narcolepsy-cataplexy. II. Psychosocial consequences and associated psychopathology. Archives of Neurology, 39(3), 169171.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological Assessment (5th ed). New York: Oxford University Press.Google Scholar
Longstreth, W.T., Koepsell, T.D., Ton, T.G., Hendrickson, A.F., & van Belle, G. (2007). The epidemiology of narcolepsy. Sleep, 30(1), 1326. doi: 10.1093/sleep/30.1.13CrossRefGoogle ScholarPubMed
Luo, G., Ambati, A., Lin, L., Bonvalet, M., Partinen, M., Ji, X., Maecker, H.T., & Mignot, E.J.M. (2018). Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proceedings of the National Academy of Sciences, 115(52), E12323E12332. doi: 10.1073/pnas.1818150116CrossRefGoogle ScholarPubMed
Mahlios, J., De la Herrán-Arita, A.K., & Mignot, E. (2013). The autoimmune basis of narcolepsy. Current Opinion in Neurobiology, 23(5), 767773. doi: 10.1016/j.conb.2013.04.013CrossRefGoogle ScholarPubMed
Medrano-Martínez, P. (2019). Neuropsychological Alteration in Narcolepsy with Cataplexy. A Case-control Study. PhD Doctoral Thesis. MadridUniversidad Complutense de Madrid.Google Scholar
Medrano-Martinez, P. & Peraita-Adrados, R. (2017). Cognitive performance in narcolepsy with cataplexy patients with and without stimulants. a preliminary case-control study. Sleep Medicine, 40, e219. doi: 10.1016/J.SLEEP.2017.11.638CrossRefGoogle Scholar
Medrano-Martínez, P., Ramos-Platón, M.J., & Peraita-Adrados, R. (2018). Alteraciones neuropsicológicas en la narcolepsia con cataplejía: Una revisión. Revista de Neurologia, 66(3), 8996. doi: 10.33588/rn.6603.2017448CrossRefGoogle Scholar
Mignot, E., Lin, X., Kalil, J., George, C., Singh, S., Billiard, M., Montplaisir, J., Arrigoni, J., Guilleminault, C., Dement, W.C. & Grumet, F.C. (1992). DQB1-0602 (DQw1) is not present in most nonDR2 Caucasian narcoleptics. Sleep, 15(5), 415422.CrossRefGoogle Scholar
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Naumann, A., Bellebaum, C., & Daum, I. (2006). Cognitive deficits in narcolepsy. Journal of Sleep Research, 15(3), 329338. doi: 10.1111/j.1365-2869.2006.00533.xCrossRefGoogle ScholarPubMed
Nevárez, N. & de Lecea, L. (2018). Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Research, 7, F1000 Faculty Rev-1421. doi: 10.12688/f1000research.15097.1CrossRefGoogle ScholarPubMed
Nishino, S., Ripley, B., Overeem, S., Lammers, G.J., & Mignot, E. (2000). Hypocretin (orexin) deficiency in human narcolepsy. Lancet (London, England), 355(9197), 3940. doi: 10.1016/S0140-6736(99)05582-8CrossRefGoogle ScholarPubMed
Ohayon, M.M. (2013). Narcolepsy is complicated by high medical and psychiatric comorbidities: a comparison with the general population. Sleep Medicine, 14(6), 488492. doi: 10.1016/j.sleep.2013.03.002CrossRefGoogle ScholarPubMed
Oosterman, J.M., Wijers, M., & Kessels, R.P.C. (2013). Planning or something else? Examining neuropsychological predictors of zoo map performance. Applied Neuropsychology, 20(2), 103109. doi: 10.1080/09084282.2012.670150CrossRefGoogle ScholarPubMed
Peyron, C., Tighe, D.K., van den Pol, A.N., de Lecea, L., Heller, H.C., Sutcliffe, J.G., & Kilduff, T.S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(23), 999610015.CrossRefGoogle ScholarPubMed
Pizza, F., Magnani, M., Indrio, C., & Plazzi, G. (2014). The hypocretin system and psychiatric disorders. Current Psychiatry Reports, 16(2), 433. doi: 10.1007/s11920-013-0433-9CrossRefGoogle ScholarPubMed
Posner, M. I. & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi: 10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Rieger, M., Mayer, G., & Gauggel, S. (2003). Attention deficits in patients with narcolepsy. Sleep, 26(1), 3643.Google ScholarPubMed
Ríos-Lago, M., Alonso, R., Periáñez, J.A., Paúl, N., Oliva, P., & Álvarez-Linera, J. (2008). Tensor de difusión por resonancia magnética y velocidad de procesamiento: estudio de la sustancia blanca en pacientes con traumatismo craneoencefálico. Trauma Fund. Mapfre, 19(2), 102112.Google Scholar
Saletu, M., Anderer, P., Saletu-Zyhlarz, G.M., Mandl, M., Saletu, B., & Zeitlhofer, J. (2009). Modafinil improves information processing speed and increases energetic resources for orientation of attention in narcoleptics: Double-blind, placebo-controlled ERP studies with low-resolution brain electromagnetic tomography (LORETA). Sleep Medicine, 10, 850858. doi: 10.1016/j.sleep.2008.12.005CrossRefGoogle Scholar
Sánchez-Cubillo, I., Periáñez, J.A, Adrover-Roig, D., Rodríguez-Sánchez, J.M., Ríos-Lago, M., Tirapu, J., & Barceló, F. (2009). Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438450. doi: 10.1017/S1355617709090626CrossRefGoogle ScholarPubMed
Sanz, J. & Vazquez, C. (2011). Adaptación Española del Inventario Para Depresión de Beck-II (BDI-II). Manual. Madrid: Pearson Education.Google Scholar
Schmidt, C.S.M., Schumacher, L.V., Römer, P., Leonhart, R., Beume, L., Martin, M., Dressing, A., Weiller, C., & Kaller, C.P. (2017). Are semantic and phonological fluency based on the same or distinct sets of cognitive processes? Insights from factor analyses in healthy adults and stroke patients. Neuropsychologia, 99, 148155. doi: 10.1016/j.neuropsychologia.2017.02.019CrossRefGoogle ScholarPubMed
Schneider, W. & Chein, J.M. (2003). Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science, 27(3), 525559.CrossRefGoogle Scholar
Schneider, W. & Shiffrin, R.M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1.CrossRefGoogle Scholar
Sohlberg, M.M. & Mateer, C.A. (1987). Effectiveness of an attention-training program. Journal of Clinical and Experimental Neuropsychology, 9(2), 117130. doi: 10.1080/01688638708405352CrossRefGoogle ScholarPubMed
Spielberger, C.D., Gorsuch, R.L., & Lushene, R.E. (1970). STAI, Manual for the State-trait Anxiety Inventory (Self-Evaluation Questionnarie). Palo Alto, California: Consulting Psychologists Press.Google Scholar
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. New YorkOxford University Press.Google Scholar
Tirapu-Ustárroz, J., Cordero-Andrés, P., Luna-Lario, P., & Hernáez-Goñi, P. (2017). Propuesta de un modelo de funciones ejecutivas basado en análisis factoriales. Revista de Neurologia, 7584. doi: 10.33588/rn.6402.2016227CrossRefGoogle Scholar
Vandeputte, M. & Weerd, A.De. (2003). Sleep disorders and depressive feelings: A global survey with the Beck depression scale. Sleep Medicine, 4, 343345. doi: 10.1016/S1389-9457(03)00059-5CrossRefGoogle ScholarPubMed
van Schie, M.K.M., Werth, E., Lammers, G.J., Overeem, S., Baumann, C.R., & Fronczek, R. (2016). Improved vigilance after sodium oxybate treatment in narcolepsy: A comparison between in-field and in-laboratory measurements. Journal of Sleep Research, 25(4), 486496. doi: 10.1111/jsr.12386CrossRefGoogle ScholarPubMed
Vignatelli, L., Plazzi, G., Peschechera, F., Delaj, L., & Alessandro, R.D. (2011). A 5-year prospective cohort study on health-related quality of life in patients with narcolepsy. Sleep Medicine, 12(1), 1923. doi: 10.1016/j.sleep.2010.07.008CrossRefGoogle ScholarPubMed
Wechsler, D. (2012). WAIS-IV. Escala de Inteligencia de Wechsler Para Adultos-IV. Manual Tecnico y de Interpretación. Madrid: PsychCorp.Google Scholar
Whiteside, D.M., Kealey, T., Semla, M., Luu, H., Rice, L., Basso, M.R., & Roper, B. (2016). Verbal fluency: Language or executive function measure? Applied Neuropsychology: Adult, 23(1), 2934. doi: 10.1080/23279095.2015.1004574CrossRefGoogle ScholarPubMed
Wilson, B.A., Alderman, N., Burgess, P.W., Emslie, H., & Evans, J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Manual. London: Pearson.Google Scholar
Yoon, S.-M., Joo, E.Y., Kim, J.Y., Hwang, K.J., & Hong, S.B. (2013). Is high IQ protective against cognitive dysfunction in narcoleptic patients? Journal of Clinical Neurology (Seoul, Korea), 9(2), 118124. doi: 10.3988/jcn.2013.9.2.118CrossRefGoogle ScholarPubMed
Zamarian, L., Högl, B., Delazer, M., Hingerl, K., Gabelia, D., Mitterling, T., Brandauer, E. & Frauscher, B. (2015). Subjective deficits of attention, cognition and depression in patients with narcolepsy. Sleep Medicine, 16(1), 4551. doi: 10.1016/j.sleep.2014.07.025CrossRefGoogle ScholarPubMed