Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T14:02:53.332Z Has data issue: false hasContentIssue false

Physical Activity as Protective Factor against Dementia: A Prospective Population-Based Study (NEDICES)

Published online by Cambridge University Press:  19 November 2015

Sara Llamas-Velasco*
Affiliation:
Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain Clinical Research Unit (Imas12), University Hospital “12 de Octubre”, Madrid, Spain
Israel Contador
Affiliation:
Department of Basic Psychology, Psychobiology and Methodology of Behavioral Science, University of Salamanca, Salamanca, Spain
Alberto Villarejo-Galende
Affiliation:
Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
David Lora-Pablos
Affiliation:
Research Institute of Hospital “12 de Octubre” (i+12), Epidemiology Section, Madrid, Spain
Félix Bermejo-Pareja
Affiliation:
Clinical Research Unit (Imas12), University Hospital “12 de Octubre”, Madrid, Spain The Biomedical Research Centre Network for Neurodegenerative Diseases (CIBERNED), Carlos III Research Institute, Madrid, Spain Faculty of Medicine, Complutense University, Madrid, Spain
*
Correspondence and reprint requests to: Sara Llamas Velasco, Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain; Av. Córdoba s/n, 28041, Madrid, Spain. E-mail: laisset@hotmail.com.

Abstract

The aim of this study was to analyze whether physical activity (PA) is a protective factor for the incidence of dementia after 3 years of follow-up. The Neurological Disorders in Central Spain (NEDICES) is a prospective population-based survey of older adults (age 65 years and older) that comprised 5278 census-based participants at baseline (1994–1995). A broad questionnaire was used to assess participants’ sociodemographic characteristics, health status, and lifestyle. Subsequently, a modified version of Rosow-Breslau questionnaire was applied to classify individuals’ baseline PA into groups (i.e., sedentary, light, moderate, and high). Cox regression models adjusted for several covariates (age, sex, education, previous stroke, alcohol consumption, hypertension, health related variables) were carried out to estimate the association between the PA groups and risk of dementia at the 3-year follow-up (1997–1998). A total of 134 incident dementia cases were identified among 3105 individuals (56.6% female; mean age=73.15±6.26) after 3 years. Hazard ratios (HRs) of the light, moderate, and high PA groups (vs. sedentary group) were 0.40 (95% confidence interval {CI} [0.26, 0.62]; p<.001), 0.32 (95% CI [0.20, 0.54]; p<.001) and 0.23 (95% CI [0.13, 0.40]; p<.001), respectively. Even after controlling for covariates and the exclusion of doubtful dementia cases, HRs remained significant. However, a supplementary analysis showed that the dose-effect hypothesis did not reach statistical significance. PA is a protective factor of incident dementia in this population-based cohort. (JINS, 2015, 21, 861–867)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Army Individual Test Battery (1944). Manual of directions and scoring. Washington, DC: War Department, Adjutant General’s Office.Google Scholar
Baldereschi, M., Amato, M.P., Nencini, P., Pracucci, G., Lippi, A., & Amaducci, L., WHO-PRA Age-Associated Dementia working group, WHO-Program for Research on Aging, Health of Elderly Program (1994). Cross-national interrater agreement on the clinical diagnostic criteria for dementia. Neurology, 44(2), 239242.CrossRefGoogle ScholarPubMed
Baldereschi, M., Meneghini, F., Quiroga, P., Albala, C., Mamo, J., & Muscat, P. (1994). Cognitive versus functional screening for dementia across different countries: Cross-cultural validation of the Mini-Mental State Examination (MMSE) and the Pfeffer activities questionnaire (PFAQ) against the standardised clinical diagnosis of dementia. Neurology, 44(Suppl. 2), A365.Google Scholar
Beeri, M.S., & Middleton, L. (2012). Being physically active may protect the brain from Alzheimer disease. Neurology, 78(17), 290291.CrossRefGoogle ScholarPubMed
Bermejo-Pareja, F., Benito-León, J., Vega, S., Medrano, M.J., & Román, G.C. (2008). Incidence and subtypes of dementia in three elderly populations of central Spain. Journal of the Neurological Sciences, 264(1-2), 6372.CrossRefGoogle ScholarPubMed
Bermejo, F., Gabriel, R., Vega, S., Morales, J.M., Rocca, W.A., & Anderson, D.W. (2001). Problems and issues with door-to-door, two-phase surveys: An illustration from central Spain. Neuroepidemiology, 20(4), 225231.CrossRefGoogle ScholarPubMed
Bermejo, F., Alom, J., Pena-Casanova, J., del Ser, T., Acarin, N., Manubens, J.M., & Gabriel, R. (1994). Multicenter register of index cases of dementia. A study by the Spanish Neurological Society's dementia group. Neurologia, 9(9), 401406.Google ScholarPubMed
Brock, D.B., Lemke, J.H., Branch, L.G., Evans, D.A., & Berkman, L.F. (1994). Mortality and physical functioning in epidemiologic studies of three older populations. Journal of Aging and Social Policy, 6(3), 2137.CrossRefGoogle ScholarPubMed
Buchman, A.S., Boyle, P.A., Yu, L., Shah, R.C., Wilson, R.S., & Bennett, D.A. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology, 78(17), 13231329.CrossRefGoogle ScholarPubMed
Chatfield, M.D., Brayne, C.E., & Matthews, F.E. (2005). A systematic literature review of attrition between waves in longitudinal studies in the elderly shows a consistent pattern of dropout between differing studies. Journal of Clinical Epidemiology, 58(1), 13e9.CrossRefGoogle Scholar
Contador, I., Bermejo-Pareja, F., Del Ser, T., & Benito-León, J. (2015). Effects of education and word reading on cognitive scores in a community-based sample of Spanish elders with diverse socioeconomic status. Journal of Clinical and Experimental Neuropsychology, 37(1), 92101.CrossRefGoogle Scholar
Cornoni-Huntley, J., Brock, D.B., Ostfeld, A., Taylor, J.O., & Wallace, R.B. (1986). Established populations for epidemiologic studies of the elderly, resource data book (NIH Pub. No. 86-2443. Bethesda, MD: National Institutes of Health.Google Scholar
Denkinger, M.D., Nikolaus, T., Denkinger, C., & Lukas, A. (2012). Physical activity for the prevention of cognitive decline: Current evidence from observational and controlled studies. Archives of Gerontology and Geriatrics, 45(1), 1116.Google ScholarPubMed
Erickson, K.L., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., & Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of National Academy of Sciences of the United States of America, 108(7), 30173022.CrossRefGoogle ScholarPubMed
Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., & Sacazufca, M. (2005). Global prevalence of dementia: A Delphi consensus study. Lancet, 366(9503), 21122117.CrossRefGoogle ScholarPubMed
Hamer, M., & Chida, Y. (2009). Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychological Medicine, 39(1), 311.CrossRefGoogle ScholarPubMed
Hayes, S.M., Alosco, M.S., & Forman, D.E. (2014). The effects of aerobic exercise on cognitive and neural decline in aging and cardiovascular disease. Current Geriatrics Reports, 3(4), 282290.CrossRefGoogle ScholarPubMed
Isaacs, B., & Kennie, A.T. (1973). The Set test as an aid to the detection of dementia in old people. The British Journal of Psychiatry, 123(575), 467470.CrossRefGoogle Scholar
Lamont, A.J., Mortby, M.E., Anstey, K.J., Sachdev, P.S., & Cherbuin, N. (2014). Using sulcal and gyral measures of brain structure to investigate benefits of an active lifestyle. Neuroimage, 91, 5359.CrossRefGoogle ScholarPubMed
Larson, E.B. (2010). Prospects for delaying the rising tide of worldwide, late-life dementias. International Psychogeriatrics, 22(8), 11961202.CrossRefGoogle ScholarPubMed
Larson, E.B., Wang, L., Bowen, J.D., McCormick, W.C., Teri, L., Crane, P., & Kukull, W. (2014). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144(2), 7382.CrossRefGoogle Scholar
Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498504.CrossRefGoogle ScholarPubMed
Lautenschlager, N.T., Cox, K., & Kurz, A.F. (2010). Physical activity and mild cognitive impairment and Alzheimer’s disease. Current Neurology and Neuroscience Reports, 10(5), 352358.CrossRefGoogle ScholarPubMed
Liu, I.Y., LaCroix, A.Z., White, L.R., Kittner, S.J., & Wolf, P.A. (1990). Cognitive impairment and mortality: A study of possible confounders. American Journal of Epidemiology, 132(1), 136143.CrossRefGoogle ScholarPubMed
Mace, C.J., Kerse, N., Maddison, R., Olds, T., Jatrana, S., Wham, C., & Broad, J. (2015, in press). Descriptive epidemiology of physical activity levels and patterns in New Zealanders in advanced age; LiLACs NZ. Journal of Aging and Physical Activity.Google Scholar
Matthews, C.E., Chen, K.Y., Freedson, P.S., Buchowski, M.S., Beech, B.M., Pate, R.R., & Troiano, R.P. (2008). Amount of time spent in sedentary behaviors in the United States, 2003–2004. American Journal of Epidemiology, 167(7), 875881.CrossRefGoogle ScholarPubMed
Morales, J.M., Bermejo, F.P., Benito-León, J., Rivera-Navarro, J., Trincado, R., Gabriel, S.R., & Vega, S. (2004). Methods and demographic findings of the baseline survey of the NEDICES cohort. Public Health, 118(6), 426433.CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 24122414.CrossRefGoogle ScholarPubMed
Murtagh, E.M., Nichols, L., Mohammed, M.A., Holder, R., Nevill, A.M., & Murphy, M.H. (2015). The effect of walking on risk factors for cardiovascular disease: An updated systematic review and meta-analysis of randomised control trials. Preventive Medicine, 72, 3443.CrossRefGoogle ScholarPubMed
Olazaran, J., Mouronte, P., & Bermejo, F. (2005). Clinical validity of two scales of instrumental activities in Alzheimer’s disease. Neurologia, 20(8), 395401.Google ScholarPubMed
Peña-Casanova, J., Guardia, J., Bertran-Serra, I., Manero, R.M., & Jarne, A. (1997). Shortened version of the Barcelona test (I): Subtests and normal profiles. Neurologia, 12(3), 99111.Google ScholarPubMed
Prieto, G., Contador, I., Tapias-Merino, E., Mitchell, A.J., & Bermejo-Pareja, F. (2012). The Mini-Mental-37 Test for Dementia Screening in the Spanish Population: An analysis using the Rasch Model. The Clinical Neuropsychologist, 26(6), 10031018.CrossRefGoogle ScholarPubMed
Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C.P. (2013). The global prevalence of dementia: A systematic review and meta-analysis. Alzheimer’s & Dementia, 9(1), 6375.CrossRefGoogle Scholar
Radak, Z., Hart, N., Sarga, L., Koltai, E., Atalay, M., Ohno, H., & Boldogh, I. (2010). Exercise plays a preventive role against Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(3), 777783.CrossRefGoogle Scholar
Reuben, D.B., & Siu, A.L. (1990). An objective measure of physical function of elderly outpatients. The Physical Performance Test. Journal of the American Geriatrics Society, 38(10), 11051112.CrossRefGoogle ScholarPubMed
Rogers, R.L., Meyer, J.S., & Mortel, K.F. (1990). After reaching retirement age physical activity sustains cerebral perfusion and cognition. Journal of the American Geriatrics Society, 38(2), 123128.CrossRefGoogle ScholarPubMed
Rolland, Y., Abellan Van Kan, G., & Vellas, B. (2008). Physical activity and Alzheimer’s disease: From prevention to therapeutic perspectives. Journal of the American Medical Directors Association, 9(6), 390405.CrossRefGoogle ScholarPubMed
Romano, P.S., Roos, L.L., & Jollis, J.G. (1993). Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives. Journal of Clinical Epidemiology, 46(10), 10751079.CrossRefGoogle ScholarPubMed
Rosow, I., & Breslau, N. (1966). A Guttman health scale for the aged. The Journals of Gerontology, 21, 556559.CrossRefGoogle ScholarPubMed
Rothman, K.J., Greenland, S., Greenland, S., & Lash, T.L. (2008). Modern epidemiology (3rd ed.). Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
SAS Institute Inc. (2011). SAS® 9.3 DS2 language reference: Getting started. Cary, NC: SAS Institute Inc.Google Scholar
Serna, A., Contador, I., Bermejo-Pareja, F., Mitchell, A.J., Fernández-Calvo, B., Ramos, F., & Benito-León, J. (2015, in press). Accuracy of a brief neuropsychological battery for the diagnosis of dementia and mild cognitive impairment: An analysis of the NEDICES cohort. Journal of Alzheimer’s Disease.CrossRefGoogle ScholarPubMed
Scarmeas, N., Luchsinger, J., Schupf, N., Brickman, A.M., Cosentino, S., Tang, M.X., & Stern, Y. (2009). Physical activity, diet, and risk of Alzheimer disease. The Journal of the American Medical Association, 302(6), 627637.CrossRefGoogle ScholarPubMed
Smith, P.J., Blumenthal, J.A., Hoffman, B.M., Cooper, H., Strauman, T.A., Welsh-Bohmer, K., & Sherwood, A. (2011). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239252.CrossRefGoogle Scholar
Smith, L.A., Branch, L.G., Scherr, P.A., Wetle, T., Evans, D.A., Hebert, L., & Taylor, J.O. (1990). Short-term variability of measures of physical function in older people. The Journal of the American Geriatrics Society, 38(9), 993998.CrossRefGoogle ScholarPubMed
Smith, J.C., Nierlson, K.A., Woodard, J.L., Seidenberg, M., Durgerian, S., Hazlett, K.E., & Rao, M.S. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 61.CrossRefGoogle ScholarPubMed
Snowden, M., Steinman, L., Mochan, K., Grodstein, F., Prohaska, T.R., Thurman, D.J., & Anderson, L.A. (2011). Effect of exercise on cognitive performance in community-dwelling older adults: Review of intervention trials and recommendations for public health practice and research. Journal of the American Geriatrics Society, 59(4), 704716.CrossRefGoogle ScholarPubMed
Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G.F., Casini, A., & Macchi, C. (2010). Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. Journal of Internal Medicine, 269(1), 107117.CrossRefGoogle ScholarPubMed
Tapias-Merino, E., Puertas-Martín, V., Vera-García, C., Lora-Pablos, D., Revuelta-Alonso, A., & Bermejo-Pareja, F. (2010). Test-retest and interobserver reliability of a Spanish version (MMSE-37) of the Folstein minimental test, adapted to populations with a low level of schooling. Revista de Neurologia, 50(11), 646652.Google ScholarPubMed
Thomas, J.W., & Lichtenstein, R. (1986). Functional health measure for adjusting health maintenance organization capitation rates. Health Care Financing Review, 7(3), 8595.Google ScholarPubMed
Tortosa-Martínez, J., & Clow, A. (2012). Does physical activity reduce risk for Alzheimer ´s disease through interaction with the stress neuroendocrine system? Stress, 15(3), 243261.CrossRefGoogle ScholarPubMed
Vega, S., Benito-León, J., Bermejo-Pareja, F., Medrano, M.J., Vega-Valderrama, L.M., Rodríguez, C., & Louis, E.D. (2010). Several factors influenced attrition in a population-based elderly cohort: Neurological disorders in Central Spain Study. Journal of Clinical Epidemiology, 63(2), 215222.CrossRefGoogle Scholar
Wang, H.X., Xu, W., & Pei, J.J. (2012). Leisure activities, cognition and dementia. Biochimica et Biophysica Acta, 1822(3), 482491.CrossRefGoogle ScholarPubMed
Wilson, R.S., Bennett, D.A., Bienias, J.L., Aggarwal, N.T., Mendes De Leon, C.F., Morris, M.C., & Evans, D.A. (2002). Cognitive activity and incident AD in a population-based sample of older persons. Neurology, 59(12), 19101914.CrossRefGoogle Scholar
World Health Organization (1980). International classification of impairments, disabilities and handicaps: A manual of classification relating to the consequences of disease. Geneva: World Health Organization.Google Scholar
World Medical Association (1989). World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Hong Kong: 41st WMA General Assembly.Google Scholar
Yamada, M., Kasagi, F., Sasaki, H., Masunari, N., Mimori, Y., & Suzuki, G. (2003). Association Between Dementia and Midlife Risk Factors: The Radiation Effects Research Foundation Adult Health Study. Journal of the American Geriatrics Society, 51(3), 410414.CrossRefGoogle ScholarPubMed
Yuki, A., Lee, S., Kim, H., Kozakai, R., Ando, F., & Shimokata, H. (2012). Relationship between physical activity and brain atrophy progression. Medicine & Science in Sports & Exercise, 44(12), 23622368.CrossRefGoogle ScholarPubMed