Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T09:55:39.017Z Has data issue: false hasContentIssue false

Prospective, declarative, and nondeclarative memory in young adults with spina bifida

Published online by Cambridge University Press:  02 February 2007

MAUREEN DENNIS
Affiliation:
Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada Department of Surgery, University of Toronto, Toronto, Canada Department of Psychology, University of Toronto, Toronto, Canada
DERRYN JEWELL
Affiliation:
Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
JAMES DRAKE
Affiliation:
Department of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
TALAR MISAKYAN
Affiliation:
Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
BRENDA SPIEGLER
Affiliation:
Department of Psychology, The Hospital for Sick Children, Toronto, Canada
ROSS HETHERINGTON
Affiliation:
Department of Psychology, University of Toronto, Toronto, Canada Community Health Systems Resource Group, The Hospital for Sick Children, Toronto, Canada
FRED GENTILI
Affiliation:
Department of Neurosurgery, Toronto Western Hospital, Toronto, Canada
MARCIA BARNES
Affiliation:
Department of Psychology, University of Guelph, Guelph, Canada

Abstract

The consequences of congenital brain disorders for adult cognitive function are poorly understood. We studied different forms of memory in 29 young adults with spina bifida meningomyelocele (SBM), a common and severely disabling neural tube defect. Nondeclarative and semantic memory functions were intact. Working memory was intact with low maintenance and manipulation requirements, but impaired on tasks demanding high information maintenance or manipulation load. Prospective memory for intentions to be executed in the future was impaired. Immediate and delayed episodic memory were poor. Memory deficits were exacerbated by an increased number of lifetime shunt revisions, a marker for unstable hydrocephalus. Memory status was positively correlated with functional independence, an important component of quality of life. (JINS, 2007, 13, 312–323.)

Type
Research Article
Copyright
© 2007 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barf, H.A., Verhoef, M., Jennekens-Schinkel, A., Post, M.W.M., Gooskens, R.H.J.M., & Prevo, A.J.H. (2003). Cognitive status of young adults with spina bifida. Developmental Medicine & Child Neurology, 45, 813820.Google Scholar
Barnes, M.A. & Dennis, M. (1992). Reading in children and adolescents after early onset hydrocephalus and in normally developing age peers: Phonological analysis, word recognition, word comprehension, and passage comprehension skill. Journal of Pediatric Psychology, 17, 445465.Google Scholar
Barnes, M., Dennis, M., & Hetherington, R. (2004a). Reading and writing skills in young adults with spina bifida and hydrocephalus. Journal of the International Neuropsychological Society, 10, 655663.Google Scholar
Barnes, M.A., Faulkner, H.J., & Dennis, M. (2001). Poor reading comprehension despite fast word decoding in children with hydrocephalus. Brain and Language, 76, 3544.Google Scholar
Barnes, M.A., Faulkner, H., Wilkinson, M., & Dennis, M. (2004b). Meaning construction and integration in children with hydrocephalus. Brain and Language, 89, 4756.Google Scholar
Barnes, M.A., Wilkinson, M., Khemani, E., Boudesquie, A., Dennis, M., & Fletcher, J.M. (2006). Arithmetic processing in children with spina bifida: Calculation accuracy, strategy use, and fact retrieval fluency. Journal of Learning Disabilities, 39, 174187.Google Scholar
Blum, R.W., Resnick, M.D., Nelson, R., & St. Germaine, A. (1991). Family and peer issues among adolescents with spina bifida and cerebral palsy. Pediatrics, 88, 280285.Google Scholar
Bowman, R.M., McLone, D.G., Grant, J.A., Tomita, T., & Ito, J.A. (2001). Spina bifida outcome: A 25-year prospective. Pediatric Neurosurgery, 34, 114120.Google Scholar
Bruininks, R.H., Woodcock, R.W., Weatherman, R.F., & Hill, B.K. (1996). Scales of independent behavior–revised. Chicago: The Riverside Publishing Company.
Cabeza, R., Nyberg, L., & Park, D. (2005). Cognitive neuroscience of aging: Linking cognitive and cerebral aging. Oxford: Oxford University Press.
Clifton, C., Jr. & Duffy, S.A. (2001). Sentence and text comprehension: Roles of linguistic structure. Annual Review of Psychology, 52, 167196.Google Scholar
Cohen, J.D., MacWhinney, B., Flatt, M.R., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavior Research Methods, Instruments, & Computers, 25, 257271.Google Scholar
Colvin, A.N., Yeates, K.O., Enrile, B.G., & Coury, D.L. (2003). Motor adaptation in children with myelomeningocele: Comparison to children with ADHD and healthy siblings. Journal of the International Neuropsychological Society, 9, 642652.Google Scholar
Craik, F.I.M. & Grady, C.L. (2002). Aging, memory, and frontal lobe functioning. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 528572). New York: Oxford University Press.
Craik, F.I.M. & McDowd, J.D. (1987). Age differences in recall and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 474479.Google Scholar
Dennis, M. & Barnes, M.A. (1993). Oral discourse after early-onset hydrocephalus: Linguistic ambiguity, figurative language, speech acts, and script-based inferences. Journal of Pediatric Psychology, 18, 639652.Google Scholar
Dennis, M. & Barnes, M. (2002). Math and numeracy in young adults with spina bifida and hydrocephalus. Developmental Neuropsychology, 21, 141155.Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Frederick, J., Francis, D.J., Hetherington, R., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M.E., & Fletcher, J.M. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43, 976987.Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Frederick, J.A., Francis, D.J., Hetherington, R., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M.E., & Fletcher, J.M. (2005b). Space-based inhibition of return in children with spina bifida. Neuropsychology, 19, 456465.Google Scholar
Dennis, M., Fitz, C.R., Netley, C.T., Sugar, J., Harwood-Nash, D.C.F., Hendrick, E.B., Hoffman, H.J., & Humphreys, R.P. (1981). The intelligence of hydrocephalic children. Archives of Neurology, 38, 607615.Google Scholar
Dennis, M., Hetherington, C.R., & Spiegler, B.J. (1998). Memory and attention after childhood brain tumors. Medical and Pediatric Oncology, Supplement 1, 2533.Google Scholar
Dennis, M., Jacennik, B., & Barnes, M.A. (1994). The content of narrative discourse in children and adolescents after early-onset hydrocephalus and in normally developing age peers. Brain and Language, 46, 129165.Google Scholar
Dennis, M., Jewell, D., Edelstein, K., Brandt, M.E., Hetherington, R., Blaser, S.E., & Fletcher, J.M. (2006b). Motor learning in children with spina bifida: Intact learning and performance on a ballistic task. Journal of the International Neuropsychological Society, 12, 598608.Google Scholar
Dennis, M., Landry, S.H., Barnes, M., & Fletcher, J.M. (2006a). A model of neurocognitive function in spina bifida over the life span. Journal of the International Neuropsychological Society, 12, 285296.Google Scholar
Edelstein, K., Dennis, M., Copeland, K., Frederick, J., Francis, D., Hetherington, R., Brandt, M.E., & Fletcher, J.M. (2004). Motor learning in children with spina bifida: Dissociation between performance level and acquisition rate. Journal of the International Neuropsychological Society, 10, 111.Google Scholar
Egawa, T., Mishima, K., Egashira, N., Fukuzawa, M., Abe, K., Yae, T., Iwasaki, K., & Fujiwara, M. (2002). Impairment of spatial memory in kaolin-induced hydrocephalic rats is associated with changes in the hippocampal cholinergic and noradrenergic contents. Behavioural Brain Research, 129, 3139.Google Scholar
Ewing-Cobbs, L., Barnes, M.A., & Fletcher, J.M. (2003). Early brain injury in children: Development and reorganization of cognitive function. Developmental Neuropsychology, 24, 669704.Google Scholar
Fletcher, J.M., Brookshire, B.L., Landry, S.H., Bohan, T.P., Davidson, K.C., Francis, D.J., Levin, H.S., Brandt, M.E., Kramer, L.A., & Morris, R.D. (1996). Attentional skills and executive functions in children with early hydrocephalus. Developmental Neuropsychology, 12, 5376.Google Scholar
Fletcher, J.M., Copeland, K., Frederick, J.A., Blaser, S.E., Kramer, L.A., Northrup, H., Hannay, H.J., Brandt, M.E., Francis, D.J., Villarreal, G., Drake, J.M., Laurent, J.P., Townsend, I., Inwood, S., Boudousquie, A., & Dennis, M. (2005). Spinal lesion level in spina bifida: A source of neural and cognitive heterogeneity. Journal of Neurosurgery, 102, 268279.Google Scholar
Fletcher, J.M., Francis, D.J., Thompson, N.M., Brookshire, B.L., Bohan, T.P., Landry, S.H., Davidson, K.C., & Miner, M.E. (1992). Verbal and nonverbal skill discrepancies in hydrocephalic children. Journal of Clinical and Experimental Neuropsychology, 14, 593609.Google Scholar
Fletcher, J.M., Northrup, H., Landry, S.H., Kramer, L.A., Brandt, M.E., Dennis, M., Barnes, M.A., Blaser, S.E., Hannay, H.J., Copeland, K., & Francis, D.J. (2004). Spina bifida: Genes, brain, and development. International Review of Research in Mental Retardation, 29, 63117.Google Scholar
Grimm, R.A. (1976). Hand function and tactile perception in a sample of children with myelomeningocele. American Journal of Occupational Therapy, 30, 234240.Google Scholar
Halliwell, M.D., Carr, J.G., & Pearson, A.M. (1980). The intellectual and educational functioning of children with neural tube defects. Zeitschrift Fur Kinderchirurgie, 31, 375381.Google Scholar
Hetherington, R. & Dennis, M. (1999). Motor function profile in children with early onset hydrocephalus. Developmental Neuropsychology, 15, 2551.Google Scholar
Hetherington, R., Dennis, M., Barnes, M., Drake, J., & Gentili, F. (2006). Functional outcome in young adults with spina bifida and hydrocephalus. Child's Nervous System, 22, 117124.Google Scholar
Hommet, C., Billard, C., Gillet, P., Barthez, M.A., Lourmiere, J.M., Santini, J.J., de Toffol, B., Corcia, P., & Autret, A. (1999). Neuropsychologic and adaptive functioning in adolescents and young adults shunted for congenital hydrocephalus. Journal of Child Neurology, 14, 144150.Google Scholar
Hommet, C., Cottier, J.P., Billard, C., Perrier, D., Gillet, P., De Toffol, B., Sirinelli, D., Bertrand, P., & Autret, A. (2002). MRI morphometric study and correlation with cognitive functions in young adults shunted for congenital hydrocephalus related to spina bifida. European Neurology, 47, 169174.Google Scholar
Horn, D.G., Lorch, E.P., Lorch, R.F., Jr., & Culatta, B. (1985). Distractibility and vocabulary deficits in children with spina bifida and hydrocephalus. Developmental Medicine & Child Neurology, 27, 713720.Google Scholar
Huber-Okrainec, J., Dennis, M., Brettschneider, J., & Spiegler, B.J. (2002). Neuromotor speech deficits in children and adults with spina bifida and hydrocephalus. Brain and Language, 80, 592602.Google Scholar
Hunt, G.M., Oakeshott, P., & Kerry, S. (1999). Link between the CSF shunt and achievement in adults with spina bifida. Journal of Neurology, Neurosurgery, & Psychiatry, 67, 591595.Google Scholar
Iddon, J.L., Morgan, D.J.R., Loveday, C., Sahakian, B.J., & Pickard, J.D. (2004). Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. Journal of Neurology, Neurosurgery, & Psychiatry, 75, 11121118.Google Scholar
Jensen, P.B. (1987). Psychological aspects of myelomeningocele: A longitudinal study. Scandinavian Journal of Psychology, 28, 313321.Google Scholar
Kriebel, R.M. & McAllister, J.P., Jr. (2000). Pathology of the hippocampus in experimental feline infantile hydrocephalus. Neurological Research, 22, 2936.Google Scholar
Kvavilashvili, L. & Ellis, J. (1996). Varieties of intention: Some distinctions and classifications. In M. Brandimonte, G.O. Einstein, & M.A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 2351). Mahwah, NJ: Lawrence Erlbaum Associates.
Loring, D.W. (Ed.). (1999). INS dictionary of neuropsychology. New York: Oxford University Press.
Mammarella, N., Cornoldi, C., & Donadello, E. (2003). Visual but not spatial working memory deficit in children with spina bifida. Brain and Cognition, 53, 311314.Google Scholar
Mataro, M., Poca, M.A., Sahuquillo, J., Cuxart, A., Iborra, J., de la Calzada, M.D., & Junque, C. (2000). Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry, 68, 615621.Google Scholar
Parsons, J.G. (1969). Short-term verbal memory in hydrocephalic children. Developmental Medicine and Child Neurology (Supplement), 20, 7577.Google Scholar
Powell, D.H., Kaplan, E.F., Whitla, D., Weintraub, S., Catlin, R., & Funkenstein, H.H. (1993). MicroCog™: Assessment of cognitive functioning. San Antonio, TX: The Psychological Corporation.
Raimondi, A.J. & Soare, P. (1974). Intellectual development in shunted hydrocephalic children. American Journal of Diseases of Children, 127, 664671.Google Scholar
Ralph, K., Moylan, P., Canady, A., & Simmons, S. (2000). The effects of multiple shunt revisions on neuropsychological functioning and memory. Neurological research, 22, 131136.Google Scholar
Rand-Hendriksen, S. & Christensen, B. (1998). Magnettomografi av sentrainervesystemet hos voksne med myelomeningocele [Magnetic tomography of the central nervous system in adults with myelomeningocele]. Tidsskrift for Den Norske Laegeforening, 118, 42084210.Google Scholar
Robertson, I.H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The test of everyday attention. Bury St. Edmunds, England: Thames Valley Test Company.
Salman, M.S., Sharpe, J.A., Eizenman, M., Lillakas, L., To, T., Westall, C., Steinbach, M.J., & Dennis, M. (2006). Saccadic adaptation in Chiari type II malformation. Canadian Journal of Neurological Sciences, 33, 372378.Google Scholar
Salman, M.S., Sharpe, J.A., Lillakas, L., Steinbach, M.J., & Dennis, M. (2005). Smooth pursuit in children with Chiari type II malformation and spina bifida. Annals of Neurology, 58, (Suppl. 9) S130.Google Scholar
Scott, M.A., Fletcher, J.M., Brookshire, B.L., Davidson, K.C., Landry, S.H., Bohan, T.C., Kramer, L.A., Brandt, M.E., & Francis, D.J. (1998). Memory functions in children with early hydrocephalus. Neuropsychology, 12, 578589.Google Scholar
Tromp, C.N., van den Burg, W., Jansen, A., & de Vries, S.J. (1979). Nature and severity of hydrocephalus and its relation to later intellectual function. Zeitschrift für Kinderchirurgie und Grenzgebiete, 28, 354360.Google Scholar
Vachha, B. & Adams, R.C. (2005). Memory and selective learning in children with spina bifida-myelomeningocele and shunted hydrocephalus: A preliminary study. Cerebrospinal Fluid Research, 2, 1016.Google Scholar
van Allen, M.I., Kalousek, D.K., Chernoff, G.F., Juriloff, D., Harris, M., McGillivray, B.C., Yong, S.-L., Langlois, S., MacLeod, P.M., Chitayat, D., Friedman, J.M., Wilson, R.D., McFadden, D., Pantzar, J., Ritchie, S., & Hall, J.G. (1993). Evidence for multi-site closure of the neural tube in humans. American Journal of Medical Genetics, 47, 723743.Google Scholar
van den Broek, P., Young, M., Tzeng, Y., & Linderholm, T. (1999). The landscape model of reading: Inferences and the online construction of memory representation. In H. van Oostendorp & S.R. Goldman (Eds.), The construction of mental representations during reading (pp. 7198). Mahwah, NJ: Lawrence Erlbaum Associates.
Wechsler, D. (1981). Wechsler adult intelligence scale–revised. Cleveland, OH: The Psychological Corporation.
Wills, K.E. (1993). Neuropsychological functioning in children with spina bifida and/or hydrocephalus. Journal of Clinical Child Psychology, 22, 247265.Google Scholar
Wilson, B., Cockburn, J., & Baddeley, A. (1985). The Rivermead behavioural memory test. Reading, England: Thames Valley Test Company.
Yeates, K.O. & Enrile, B.G. (2005). Implicit and explicit memory in children with congenital and acquired brain disorder. Neuropsychology, 19, 618628.Google Scholar
Yeates, K.O., Enrile, B.G., Loss, N., Blumenstein, E., & Delis, D.C. (1995). Verbal learning and memory in children with myelomeningocele. Journal of Pediatric Psychology, 20, 801815.Google Scholar
Yeates, K.O., Fletcher, J.M., & Dennis, M., (in press). Spina bifida and hydrocephalus. In J.E. Morgan & J.H. Ricker (Eds.), Handbook of neuropsychology. New York: Taylor & Francis.