Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T11:51:19.439Z Has data issue: false hasContentIssue false

Severity of Ongoing Post-Concussive Symptoms as a Predictor of Cognitive Performance Following a Pediatric Mild Traumatic Brain Injury

Published online by Cambridge University Press:  27 November 2020

Veronik Sicard
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Danielle C. Hergert
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Sharvani Pabbathi Reddy
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Cidney R. Robertson-Benta
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Andrew B. Dodd
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Nicholas A. Shaff
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
David D. Stephenson
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
Keith Owen Yeates
Affiliation:
Department of Psychology, University of Calgary, Calgary, Alberta, Canada Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
Jason A. Cromer
Affiliation:
Child Study Center, Yale University, New Haven, CT, USA Cogstate Ltd, New Haven, CT, USA
Richard A. Campbell
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
John P. Phillips
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA Department of Neurology, University of New Mexico, Albuquerque, NM, USA
Robert E. Sapien
Affiliation:
Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
Andrew R. Mayer*
Affiliation:
The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA Department of Neurology, University of New Mexico, Albuquerque, NM, USA Department of Psychology, University of New Mexico, Albuquerque, NM, USA
*
*Correspondence and reprint requests to: Andrew R. Mayer, Ph.D., Mind Research Network, Pete and Nancy Domenici Hall, 1101 Yale Ave NE, Albuquerque, NM 87106, USA. Email: amayer@mrn.org

Abstract

Objective:

This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury.

Method:

203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8–18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1–11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase.

Results:

Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not.

Conclusions:

The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardila, A., Rosselli, M., Matute, E., & Guajardo, S. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28(1), 539560. doi: 10.1207/s15326942dn2801_5 CrossRefGoogle ScholarPubMed
Babcock, L., Byczkowski, T., Wade, S. L., Ho, M., Mookerjee, S., & Bazarian, J. J. (2013). Predicting postconcussion syndrome after mild traumatic brain injury in children and adolescents who present to the emergency department. JAMA Pediatrics, 167(2), 156161. doi: 10.1001/jamapediatrics.2013.434 CrossRefGoogle ScholarPubMed
Babikian, T., McArthur, D., & Asarnow, R. F. (2013). Predictors of 1-month and 1-year neurocognitive functioning from the UCLA longitudinal mild, uncomplicated, pediatric traumatic brain injury study. Journal of the International Neuropsychological Society, 19(2), 145154. doi: 1017/S135561771200104X CrossRefGoogle ScholarPubMed
Baillargeon, A., Lassonde, M., Leclerc, S., & Ellemberg, D. (2012). Neuropsychological and neurophysiological assessment of sport concussion in children, adolescents and adults. Brain Injury, 26(3), 211220. doi: 10.3109/02699052.2012.654590 CrossRefGoogle Scholar
Beauchamp, M. H., Aglipay, M., Yeates, K. O., Desire, N., Keightley, M., Anderson, P., … Zemek, R. (2018). Predictors of neuropsychological outcome after pediatric concussion. Neuropsychology, 32(4), 495508. doi: 10.1037/neuro0000419 CrossRefGoogle ScholarPubMed
Belanger, H. G., Curtiss, G., Demery, J. A., Lebowitz, B. K., & Vanderploeg, R. D. (2005). Factors moderating neuropsychological outcomes following mild traumatic brain injury: A meta-analysis. Journal of the International Neuropsychological Society, 11(3), 215227. doi: 10.1017/S1355617705050277 CrossRefGoogle ScholarPubMed
Belanger, H. G., & Vanderploeg, R. D. (2005). The neuropsychological impact of sports-related concussion: A meta-analysis. Journal of the International Neuropsychological Society, 11(4), 345357. doi: 10.1017/S1355617705050411 CrossRefGoogle ScholarPubMed
Brooks, B. L., Daya, H., Khan, S., Carlson, H. L., Mikrogianakis, A., & Barlow, K. M. (2016). Cognition in the emergency department as a predictor of recovery after pediatric mild traumatic brain injury. Journal of the International Neuropsychological Society, 22(4), 379387. doi: 1017/S135561775001368 CrossRefGoogle ScholarPubMed
Cogstate. (2018). Cogstate pediatric and adult normative data. New Haven, CT: Cogstate Ltd.Google Scholar
Catale, C., Marique, P., Closset, A., & Meulemans, T. (2009). Attentional and executive functioning following mild traumatic brain injury in children using the Test for Attentional Performance (TAP) battery. Journal of Clinical and Experimental Neuropsychology, 31(3), 331338. doi: 10.1080/13803390802134616 CrossRefGoogle ScholarPubMed
Chen, J. K., Johnston, K. M., Collie, A., McCrory, P., & Ptito, A. (2007). A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. Journal of Neurology, Neurosurgery and Psychiatry, 78(11), 12311238. doi: 10.1136/jnnp.2006.110395 CrossRefGoogle ScholarPubMed
Cole, W. R., Arrieux, J. P., Ivins, B. J., Schwab, K. A., & Qashu, F. M. (2018). A comparison of four computerized neurocognitive assessment tools to a traditional neuropsychological test battery in service members with and without mild traumatic brain injury. Archives of Clinical Neuropsycology, 33(1), 102119. doi: 10.1093/arclin/acx036 CrossRefGoogle ScholarPubMed
Collie, A., Makdissi, M., Maruff, P., Bennell, K., & McCrory, P. (2006). Cognition in the days following concussion: Comparison of symptomatic versus asymptomatic athletes. Journal of Neurology, Neurosurgery and Psychiatry, 77(2), 241245. doi: 10.1136/jnnp.2005.073155 CrossRefGoogle ScholarPubMed
Collie, A., Maruff, P., Darby, D. G., & McStephen, M. (2003a). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. Journal of the International Neuropsychological Society, 9(3), 419428. doi: 10.107/S1355617703930074 CrossRefGoogle ScholarPubMed
Collie, A., Maruff, P., Makdissi, M., McCrory, P., McStephen, M., & Darby, D. (2003b). CogSport: Reliability and correlation with conventional cognitive tests in postconcussion medical evaluations. Clinical Journal of Sports Medicine, 13(1), 2832.CrossRefGoogle ScholarPubMed
Crowe, L., Collie, A., Hearps, S., Dooley, J., Clausen, H., Maddocks, D., … Anderson, V. (2016). Cognitive and physical symptoms of concussive injury in children: A detailed longitudinal recovery study. British Journal of Sports Medicine, 50(5), 311316. doi: 10.1136/bjsports-2015-094663 CrossRefGoogle ScholarPubMed
Davis, A. S., Bernat, D. J., & Reynolds, C. R. (2018). Estimation of premorbid functioning in pediatric neuropsychology: Review and recommendations. Journal of Pediatric Neuropsychology, 4(1–2), 4962.CrossRefGoogle Scholar
Denning, J. H. (2012). The efficiency and accuracy of the Test of Memory Malingering trial 1, errors on the first 10 items of the test of memory malingering, and five embedded measures in predicting invalid test performance. Archives of Clinical Neuropsychology, 27(4), 417432. doi: 10.1093/arclin/acs044 CrossRefGoogle ScholarPubMed
Doniger, G. M., Simon, E. S., & Schweiger, A. (2008). Adjustment of cognitive scores with a co-normed estimate of premorbid intelligence: Implementation using mindstreams computerized testing. Applied Neuropsychology, 15(4), 250263. doi: 10.1080/09084280802325074 CrossRefGoogle ScholarPubMed
Falleti, M. G., Maruff, P., Collie, A., & Darby, D. G. (2006). Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. Journal of Clinical and Experimental Neuropsychology, 28(7), 10951112. https://doi:10.1080/13803390500205718 CrossRefGoogle ScholarPubMed
Gardner, A. J., Howell, D. R., & Iverson, G. L. (2020). The association between multiple prior concussions, cognitive test scores, and symptom reporting in youth rugby league players. Brain Injury, 34(2), 224228. https://doi:10.1080/02699052.2019.1683894 CrossRefGoogle ScholarPubMed
Gioia, G. A., Schneider, J. C., Vaughan, C. G., & Isquith, P. K. (2009). Which symptom assessments and approaches are uniquely appropriate for paediatric concussion? British Journal of Sports Medicine, 43(Suppl 1), i13i22. https://doi:10.1136/bjsm.2009.058255 CrossRefGoogle ScholarPubMed
Green, R. E., Melo, B., Christensen, B., Ngo, L. A., Monette, G., & Bradbury, C. (2008). Measuring premorbid IQ in traumatic brain injury: An examination of the validity of the Wechsler Test of Adult Reading (WTAR). Journal of Clinical and Experimental Neuropsychology, 30(2), 163172. https://doi:10.1080/13803390701300524 CrossRefGoogle Scholar
Grigorian, A., Nahmias, J., Dolich, M., Barrios, C. Jr, Schubl, S. D., Sheehan, B., & Lekawa, M. (2019). Increased risk of head injury in pediatric patients with attention deficit hyperactivity disorder. Journal of Child and Adolescent Psychiatric Nursing, 32(4), 171176. doi: 10.1111/jcap.12246 CrossRefGoogle ScholarPubMed
Haider, M. N., Leddy, J. J., Pavlesen, S., Kluczynski, M., Baker, J. G., Miecznikowski, J. C., … Willer, B. S. (2018). A systematic review of criteria used to define recovery from sport-related concussion in youth athletes. British Journal of Sports Medicine, 52(18), 11791190. doi: 101136/bjsports-2016-096551 CrossRefGoogle ScholarPubMed
Howell, D., Osternig, L., Van, D. P., Mayr, U., & Chou, L. S. (2013). Effects of concussion on attention and executive function in adolescents. Medicine & Science in Sports & Exercise, 45(6), 10301037. doi:10.1249/MSS.0b013e3182814595 CrossRefGoogle ScholarPubMed
Howell, D. R., Zemek, R., Brilliant, A. N., Mannix, R. C., Master, C. L., & Meehan, W. P. III (2018). Identifying persistent postconcussion symptom risk in a pediatric sports medicine clinic. American Journal of Sports Medicine, 46(13), 32543261. doi: 10.1177/0363546518796830 CrossRefGoogle Scholar
Iverson, G. L., Gardner, A. J., Terry, D. P., Ponsford, J. L., Sills, A. K., Broshek, D. K., & Solomon, G. S. (2017). Predictors of clinical recovery from concussion: a systematic review. British Journal of Sports Medicine, 51(12), 941948.CrossRefGoogle ScholarPubMed
Iverson, G. L., Wojtowicz, M., Brook, B. L., Maxwell, B. A., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2020) Higher school athletes with ADHD and learning difficulties have a greater lifetime concussion history. Journal of Attention Disorders, 24(8), 10951101. doi: 10.1177/1087054716657410 CrossRefGoogle Scholar
Kay, T., Harrington, D. E., Adams, R., Anderson, T., Berrol, S., Cicerone, K., … Malec, J. (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8(3), 8687.CrossRefGoogle Scholar
Kaye, S., Sundman, M. H., Hall, E. E., Williams, E., Patel, K., & Ketcham, C. J. (2019). Baseline neurocognitive performance and symptoms in those with attention deficit hyperactivity disorders and history of concussion with previous loss of consciousness. Frontiers in Neurology, 10. doi: 10.3389/fneur.2019.00396 CrossRefGoogle Scholar
Keightley, M. L., Singh, S. R., Chen, J. K., Gagnon, I., Leonard, G., Petrides, M., … Ptito, A. (2014). A functional magnetic resonance imaging study of working memory in youth after sports-related concussion: Is it still working? Journal of Neurotrauma, 31(5), 437451. doi: 10.1089/neu.2013.3052 CrossRefGoogle ScholarPubMed
Lau, B. C., Collins, M. W., & Lovell, M. R. (2012). Cutoff scores in neurocognitive testing and symptom clusters that predict protracted recovery from concussions in high school athletes. Neurosurgery, 70(2), 371379. doi: 10.1227/NEU.0b013e31823150f0 CrossRefGoogle ScholarPubMed
Lau, B. C., Kontos, A. P., Collins, M. W., Mucha, A., & Lovell, M. R. (2011). Which on-field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? American Journal of Sports Medicine, 39(11), 23112318. doi: 10.1177/036354651141055 CrossRefGoogle Scholar
Louey, A. G., Cromer, J. A., Schembri, A. J., Darby, D. G., Maruff, P., Makdissi, M.Mccrory, P. (2014). Detecting cognitive impairment after concussion: sensitivity of change from baseline and normative data methods using the CogSport/Axon cognitive test battery. Archives of Clinical Neuropsychology, 29(5), 432441. doi: 10.1093/arclin/acu020 CrossRefGoogle ScholarPubMed
Lumba-Brown, A., Teramoto, M., Bloom, O. J., Brody, D., Chesnutt, J., Clugston, J. R., Collins, M., … Ghajara, J. (2020). Concussion guidelines step 2: Evidence for subtype classification. Neurosurgery, 87(1), 213. doi:10.1093/neuros/nyz332 CrossRefGoogle Scholar
Makdissi, M., Darby, D., Maruff, P., Ugoni, A., Bukner, P., & McCrory, P. R. (2010). Natural history of concussion in sport: Markers of severity and implications for management. American Journal of Sports Medicine, 38(3), 464471. doi: 10.1177/0363546509349491 CrossRefGoogle ScholarPubMed
Maruff, P., Thomas, E., Cysique, L., Brew, B., Collie, A., Snyder, P., … Pietrzak, R. H. (2009). Validity of the CogState brief battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Archives of Clinical Neuropsychology, 24(2), 165178. https://doi:10.1093/aclin/acp010.CrossRefGoogle ScholarPubMed
Mautner, K., Sussman, W. I., Axtman, M., Al-Farsi, Y., & Al-Adawi, S. (2015). Relationship of attention deficit hyperactivity disorder and postconcussion recovery in youth athletes. Clinical Journal of Sports Medicine, 25(4), 355360. doi: 10.1097/JSM.0000000000000151 CrossRefGoogle ScholarPubMed
Mayer, A. R., Cohen, D. M., Wertz, C. J., Dodd, A. B., Shoemaker, J., Pluto, C., … Yeates, K. O. (2020). Radiological common data elements rates in pediatric mild traumatic brain injury. Neurology, 94(3), e241e253. doi: 10.1212/WNL.00000000000008488 CrossRefGoogle Scholar
Mayer, A. R., Stephenson, D. D., Dodd, A. B., Robertson-Benta, C., Pabbathi, R. S., Shaff, N., … Quinn, D. K. (2020). A comparison of methods for classifying persistent post-concussive symptoms in children. Journal of Neurotrauma. Advanced publication online. doi: 10.1089/neu.2019.6805 CrossRefGoogle Scholar
Mayr, U., LaRoux, C., Rolheiser, T., Osternig, L., Chou, L. S., & van Donkelaar, P. (2014). Executive dysfunction assessed with a task-switching task following concussion. PLoS One, 9, e91379. doi: 10.1371/journal.pone.0091379 CrossRefGoogle ScholarPubMed
McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., … Cantu, R. (2009). Consensus statement on concussion in sport: the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. British Journal of Sports Medicine, 43(Suppl 1), i76i84. doi: 10.1136/bjsm.2009.058248 CrossRefGoogle Scholar
McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., … Turner, M. (2013). Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250258. doi: 10.1136/bjsports-2013-092313 CrossRefGoogle Scholar
Meehan, W. P. III, Mannix, R. C., Stracciolini, A., Elbin, R. J., & Collins, M. W. (2013). Symptom severity predicts prolonged recovery after sport-related concussion, but age and amnesia do not. Journal of Pediatrics, 163(3), 721725. doi: 10.106/j.jpeds.2013.03.012 CrossRefGoogle ScholarPubMed
Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 4048.CrossRefGoogle ScholarPubMed
Moore, R. D., Kay, J. J., & Ellemberg, D. (2018). The long-term outcomes of sport-related concussion in pediatric populations. International Journal of Psychophysiology, 132(Pt A), 1424. doi: 10.16/j.ijpsycho.2018.04.003 CrossRefGoogle ScholarPubMed
Moore, R. D., Pindus, D. M., Raine, L. B., Drollette, E. S., Scudder, M. R., Ellemberg, D., … Hillman, C. H. (2016). The persistent influence of concussion on attention, executive control and neuroelectric function in preadolescent children. International Journal of Psychophysiology, 99, 8595. doi: 10.1016/j.ijpsycho.2015.11.010 CrossRefGoogle ScholarPubMed
Moore, R. D., Sicard, V., Pindus, D., Raine, L. B., Drollette, E. S., Scudder, M. R., … Hillman, C. H. (2019). A targeted neuropsychological examination of children with a history of sport-related concussion. Brain Injury, 33(3), 291298. doi: 10.1080/02699052.2018.154 CrossRefGoogle ScholarPubMed
Nelson, L. D., Guskiewicz, K. M., Marshall, S. W., Hammeke, T., Barr, W., Randolph, C., & McCrea, M. A. (2016b). Multiple self-reported concussions are more prevalent in athletes with ADHD and learning disability. Clinical Journal of Sports Medicine, 26(2), 120127. doi: 10.1097/JSM.0000000000000207 CrossRefGoogle ScholarPubMed
Nelson, L. D., LaRoche, A. A., Pfaller, A. Y., Lerner, E. B., Hammeke, T. A., Randolph, C., … McCrea, M. A. (2016a). Prospective, head-to-head study of three computerized neurocognitive assessment tools (CNTs): Reliability and validity for the assessment of sport-related concussion. Journal of the International Neuropsychological Society, 22(1), 2437. doi: 10.1017/S1355617717000157 CrossRefGoogle ScholarPubMed
Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., … Sowell, E. R. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773778. doi: 10.1038/nn.3983 CrossRefGoogle ScholarPubMed
Orme, D. R., Johnstone, B., Hanks, R., & Novack, T. (2004). The WRAT-3 Reading subtest as a measure of premorbid intelligence among persons with brain injury. Rehabilitation Psychology, 49(3), 250253. doi: 10.1037/0090-5550.49.3.250 CrossRefGoogle Scholar
Overall, J. E. & Woodward, J. A. (1977). Common misconceptions concerning the analysis of covariance. Multivariate Behavioral Research, 12(2), 171186. doi: 10.1207/s15327906mbr1202_5 CrossRefGoogle ScholarPubMed
Parks, A. C., Moore, R. D., Wu, C. T., Broglio, S. P., Covassin, T., Hillman, C. H., … Pontifex, M. B. (2015). The association between a history of concussion and variability in behavioral and neuroelectric indices of cognition. International Journal of Psychophysiology, 98(3 Pt 1), 426434. doi: 10.1016/j.ijpsycho.2015.08.006 CrossRefGoogle ScholarPubMed
Pontifex, M. B., Broglio, S. P., Drollette, E. S., Scudder, M. R., Johnson, C. R., O’Connor, P. M., … Hillman, C. H. (2012). The relation of mild traumatic brain injury to chronic lapses of attention. Research Quaterly for Exercise and Sport, 83(4), 553559.CrossRefGoogle ScholarPubMed
Pontifex, M. B., O’Connor, P. M., Broglio, S. P., & Hillman, C. H. (2009). The association between mild traumatic brain injury and cognitive control. Neuropsychologia, 47(14), 32103216. doi: 10.1016/j.neuropsychologia.2009.07.021 CrossRefGoogle ScholarPubMed
Sady, M. D., Vaughan, C. G., & Gioia, G. A. (2014). Psychometric characteristics of the postconcussion symptom inventory in children and adolescents. Archives of Clinical Neuropsychology, 29(4), 348363. doi: 10.1093/arclin/acu014 CrossRefGoogle ScholarPubMed
Salinas, C. M., Dean, P., LoGalbo, A., Dougherty, M., Field, M., & Webbe, F. M. (2016). Attention-deficit hyperactivity disorder status and baseline neurocognitive performance in high school athletes. Applied Neuropsychology Child, 5(4), 264272. doi: 10.1080/21622965.205.1052814 CrossRefGoogle ScholarPubMed
Schatz, P., & Putz, B. O. (2006). Cross-validation of measures used for computer-based assessment of concussion. Applied Neuropsychology, 13(3), 151159. doi: 10.1207/s15324826an1303-2 CrossRefGoogle ScholarPubMed
Sicard, V., Moore, R. D., & Ellemberg, D. (2018). Long-term cognitive outcomes in male and female athletes following sport-related concussions. International Journal of Psychophysiology, 132(Pt A), 38. doi: 10.1016/j.ijpsycho.2018.03.011 CrossRefGoogle ScholarPubMed
Sicard, V., Moore, R. D., & Ellemberg, D. (2019). Sensitivity of the Cogstate test battery for detecting prolonged cognitive alterations stemming from sport-related concussions. Clinical Journal of Sports Medicine, 29(1), 6268. doi: 10.1097/JSM.0000000000000492 CrossRefGoogle ScholarPubMed
Silverberg, N. D., Gardner, A. J., Brubacher, J. R., Panenka, W. J., Li, J. J., & Iverson, G. L. (2015). Systematic review of multivariable prognostic models for mild traumatic brain injury. Journal of Neurotrauma, 32(8), 517526. doi: 10.1089.neu.2014.3600.CrossRefGoogle ScholarPubMed
Takagi, M., Hearps, S. J. C., Babl, F. E., Anderson, N., Bressan, S., Clarke, C., … Anderson, V. (2020). Does a computerized neuropsychological test predict prolonged recovery in concussed children presenting to the ED? Child Neuropsychology, 26(1), 5468. doi: 10.1080/09297048.2019.1639653 CrossRefGoogle ScholarPubMed
Taylor, C. A., Bell, J. M., Breiding, M. J., & Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. Morbidity and Mortality Weekly Report Surveillance Summaries, 66(9), 116.Google ScholarPubMed
Waljas, M., Iverson, G. L., Lange, R. T., Hakulinen, U., Dastidar, P., Huhtala, H., … Ohman, J. (2015). A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. Journal of Neurotrauma, 32(8), 534547. doi: 10.1089/neu.2014.3339 CrossRefGoogle ScholarPubMed
Wilkinson, G. S. & Robertson, G. J. (2006). WRAT 4: Wide range achievement test: Professional manual. Lutz, FL: Psychological Assessment Resources, Incorporated.Google Scholar
Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern, C., … Osmond, M. H. (2016). Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the ED. JAMA, 315(10), 10141025. doi: 10.1001/jama.2016.1203 CrossRefGoogle ScholarPubMed