Published online by Cambridge University Press: 13 July 2016
Objectives: Mild cognitive impairment (MCI) has been associated with a high risk of conversion to Alzheimer’s dementia. In addition to memory complaints, impairments in the visuospatial domain have been reported in this condition. We have previously shown that deficits in perceiving structure-from-motion (SFM) objects are reflected in functional reorganization of brain activity within the visual ventral stream. Here we aimed to identify structural correlates of psychophysical complex face and object recognition performance in amnestic MCI patients (n=30 vs. n=25 controls). This study was, therefore, motivated by evidence from recent studies showing that a combination of visual information across dorsal and ventral visual streams may be needed for the perception of three-dimensional (3D) SFM objects. Methods: In our experimental paradigm, participants had to discriminate 3D SFM shapes (faces and objects) from 3D SFM meaningless (scrambled) shapes. Results: Morphometric analysis established neuroanatomical evidence for impairment in MCI as demonstrated by smaller hippocampal volumes. We found association between cortical thickness and face recognition performance, comprising the occipital lobe and visual ventral stream fusiform regions (overlapping the known location of face fusiform area) in the right hemisphere, in MCI. Conclusions: We conclude that impairment of 3D visual integration exists at the MCI stage involving also the visual ventral stream and contributing to face recognition deficits. The specificity of such observed structure-function correlation for faces suggests a special role of this processing pathway in health and disease. (JINS, 2016, 22, 744–754)