Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:41:07.129Z Has data issue: false hasContentIssue false

Verbal Fluency in Cerebral Small Vessel Disease and Alzheimer's Disease

Published online by Cambridge University Press:  03 March 2014

Vanessa Herbert
Affiliation:
Stroke and Dementia Research Centre, St. George's, University of London, London, United Kingdom
Rebecca L Brookes*
Affiliation:
Stroke and Dementia Research Centre, St. George's, University of London, London, United Kingdom
Hugh S Markus
Affiliation:
University of Cambridge, Department of Neurology, Cambridge, United Kingdom
Robin G Morris
Affiliation:
Department of Psychology, Institute of Psychiatry, King's College London, London, United Kingdom
*
Correspondence and reprint requests to: Rebecca Brookes, Stroke and Dementia Research Centre, St George's, University of London, Cranmer Terrace, London, SW17 0RE. E-mail: rbrookes@sgul.ac.uk

Abstract

Patterns of verbal fluency deficits have been explored across different neurodegenerative disorders. This study sought to investigate the specific pattern of verbal fluency performance in cerebral small vessel disease (SVD), which is the most common cause of vascular cognitive impairment, and compare this with Alzheimer's disease (AD). Participants with SVD (n = 45), AD (n = 24) and healthy controls (n = 80) completed assessments of semantic and phonemic fluency. Mixed-model analyses of covariance were used to compare performance on the different fluency tasks between the groups, and a discriminant function analysis was conducted to examine group differentiation. The SVD group was impaired in both fluency tasks when compared to the controls. In contrast, the AD group displayed impairment in semantic fluency only. Discriminant function analysis revealed that fluency scores correctly classified 80% of SVD patients and 92% of AD patients. The pattern of performance observed in the SVD group may reflect deficits in executive function and processing speed impacting equivalently on semantic and phonemic fluency. The differences between the SVD and AD groups highlighted in this study may be useful for distinguishing between these conditions. (JINS, 2014, 20, 1–9)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR® . Arlington, VA: American Psychiatric Pub.Google Scholar
Bamford, J., Sandercock, P., Dennis, M., Burn, J., Warlow, C. (1991). Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet, 337, 15211526. doi:10.1016/0140-6736(91)93206-O Google Scholar
Brookes, R.L., Hannesdottir, K., Lawrence, R., Morris, R.G., Markus, H.S. (2012). Brief memory and executive test: Evaluation of a new screening test for cognitive impairment due to small vessel disease. Age and Ageing, 41(2), 212218. doi:10.1093/ageing/afr172 Google Scholar
Bright, P., Jaldow, E., Kopelman, M.D. (2002). The national adult reading test as a measure of premorbid intelligence: A comparison with estimates derived from demographic variables. Journal of the International Neuropsychological Society, 8(6), 847854.Google Scholar
Carew, T.G., Lamar, M., Cloud, B.S., Grossman, M., Libon, D.J. (1997). Impairment in category fluency in ischemic vascular dementia. Neuropsychology, 11(3), 400412.Google Scholar
Charlton, R.A., Morris, R.G., Nitkunan, A., Markus, H.S. (2006). The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology, 66(10), 15231526. doi:10.1212/01.wnl.0000216270.02610.7e CrossRefGoogle ScholarPubMed
Crawford, J.R., Deary, I.J., Starr, J., Whalley, L.J. (2001). The NART as an index of prior intellectual functioning: A retrospective validity study covering a 66-year interval. Psychological Medicine, 31(3), 451458.Google Scholar
Erkinjuntti, T., Kurz, A., Small, G.W., Bullock, R., Lilienfeld, S., Damaraju, C.V., & GAL-INT-6 Study Group (2003). An open-label extension trial of galantamine in patients with probable vascular dementia and mixed dementia. Clinical Therapeutics, 25(6), 17651782.Google Scholar
Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A. (1987). MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR. American Journal of Roentgenology, 149(2), 351356. doi:10.2214/ajr.149.2.351 CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.Google Scholar
Fromm, D., Holland, A.L., Nebes, R.D., Oakley, M.A. (1991). A longitudinal study of word-reading ability in Alzheimer's disease: Evidence from the national adult reading test. Cortex, 27(3), 367376.Google Scholar
Gomar, J.J., Bobes-Bascaran, M.T., Conejero-Goldberg, C., Davies, P., Goldberg, T.E., & Alzheimer's Disease Neuroimaging Initiative. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer's disease neuroimaging initiative. Archives of General Psychiatry, 68(9), 961969. doi:10.1001/archgenpsychiatry.2011.96; 10.1001/archgenpsychiatry.2011.96 Google Scholar
Henry, J.D., Crawford, J.R., Phillips, L.H. (2004). Verbal fluency performance in dementia of the Alzheimer's type: A meta-analysis. Neuropsychologia, 42(9), 12121222. doi:10.1016/j.neuropsychologia.2004.02.001 Google Scholar
Jokinen, H., Schmidt, R., Ropele, S., Fazekas, F., Gouw, A.A., Barkhof, F., … LADIS Study Group. (2013). Diffusion changes predict cognitive and functional outcome: The LADIS study. Annals of Neurology, 73(5), 576583. doi:10.1002/ana.23802; 10.1002/ana.23802 Google Scholar
Jones, S., Laukka, E.J., Backman, L. (2006). Differential verbal fluency deficits in the preclinical stages of Alzheimer's disease and vascular dementia. Cortex, 42(3), 347355.Google Scholar
Lafosse, J.M., Reed, B.R., Mungas, D., Sterling, S.B., Wahbeh, H., Jagust, W.J. (1997). Fluency and memory differences between ischemic vascular dementia and Alzheimer's disease. Neuropsychology, 11(4), 514522.Google Scholar
Lamar, M., Dannhauser, T.M., Walker, Z., Rodda, J.E., Cutinha, D.J., Shergill, S.S. (2011). Memory complaints with and without memory impairment: The impact of leukoaraiosis on cognition. Journal of the International Neuropsychological Society, 17(6), 11041112. doi:10.1017/S1355617711001123; 10.1017/S1355617711001123 CrossRefGoogle ScholarPubMed
Lamar, M., Price, C.C., Davis, K.L., Kaplan, E., Libon, D.J. (2002). Capacity to maintain mental set in dementia. Neuropsychologia, 40(4), 435445.Google Scholar
Lamar, M., Price, C.C., Giovannetti, T., Swenson, R., Libon, D.J. (2010). The dysexecutive syndrome associated with ischemic vascular disease and related subcortical neuropathology: A Boston process approach. Behavioural Neurology, 22(1-2), 5362. doi:0.3233/BEN-2009-0237 Google Scholar
Lawrence, A.J., Patel, B., Morris, R.G., MacKinnon, A.D., Rich, P.M., Barrick, T.R., Markus, H.S. (2013). Mechanisms of cognitive impairment in cerebral small vessel disease: Multimodal MRI results from the St George's cognition and neuroimaging in stroke (SCANS) study. PloS One, 8(4), e61014. doi:10.1371/journal.pone.0061014; 10.1371/journal.pone.0061014 Google Scholar
Lawton, M.P., Brody, E.M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The Gerontologist, 9(3), 179186.Google Scholar
Libon, D.J., Price, C.C., Giovannetti, T., Swenson, R., Bettcher, B.M., Heilman, K.M., Pennisi, A. (2008). Linking MRI hyperintensities with patterns of neuropsychological impairment: Evidence for a threshold effect. Stroke, 39(3), 806813. doi:10.1161/STROKEAHA.107.489997; 10.1161/STROKEAHA.107.489997 CrossRefGoogle ScholarPubMed
Maddrey, A.M., Cullum, C.M., Weiner, M.F., Filley, C.M. (1996). Premorbid intelligence estimation and level of dementia in Alzheimer's disease. Journal of the International Neuropsychological Society, 2(6), 551555.CrossRefGoogle ScholarPubMed
Martin, A., Wiggs, C.L., Lalonde, F., Mack, C. (1994). Word retrieval to letter and semantic cues: A double dissociation in normal subjects using interference tasks. Neuropsychologia, 32(12), 14871494.Google Scholar
McDowd, J., Hoffman, L., Rozek, E., Lyons, K.E., Pahwa, R., Burns, J., Kemper, S. (2011). Understanding verbal fluency in healthy aging, Alzheimer's disease, and Parkinson's disease. Neuropsychology, 25(2), 210225. doi:10.1037/a0021531; 10.1037/a0021531 Google Scholar
Monsch, A., Bondi, M., Butters, N., Paulsen, J., Salmon, D., Brugger, P., Swenson, M. (1994). A comparison of category and letter fluency in Alzheimer's disease and Huntingdon's disease. Neuropsychology, 8(1), 2530. doi:10.1037/0894-4105.8.1.25 Google Scholar
Murphy, K.J., Rich, J.B., Troyer, A.K. (2006). Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer's type dementia. Journal of the International Neuropsychological Society, 12(4), 570574.Google Scholar
Nelson, H., Willison, J.R. (1991). National Adult Reading Test (NART): Test Manual (2nd ed.). London: NFER-Nelson.Google Scholar
Nitkunan, A., Barrick, T.R., Charlton, R.A., Clark, C.A., Markus, H.S. (2008). Multimodal MRI in cerebral small vessel disease: Its relationship with cognition and sensitivity to change over time. Stroke, 39(7), 19992005. doi:10.1161/STROKEAHA.107.507475 Google Scholar
Nutter-Upham, K.E., Saykin, A.J., Rabin, L.A., Roth, R.M., Wishart, H.A., Pare, N., Flashman, L.A. (2008). Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Archives of Clinical Neuropsychology, 23(3), 229241. doi:10.1016/j.acn.2008.01.005; 10.1016/j.acn.2008.01.005 Google Scholar
O'Brien, J.T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., Gorelick, P.B. (2003). Vascular cognitive impairment. The Lancet Neurology, 2(2), 8998.Google Scholar
O'Sullivan, M., Morris, R.G., Markus, H.S. (2005). Brief cognitive assessment for patients with cerebral small vessel disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(8), 11401145. doi:10.1136/jnnp.2004.045963 CrossRefGoogle ScholarPubMed
Patterson, K.E., Graham, N., Hodges, J.R. (1994). Reading in dementia of the Alzheimer type: A preserved ability? Neuropsychology, 8, 395412. doi:10.1037/0894-4105.8.3.395 Google Scholar
Pettersen, J.A., Sathiyamoorthy, G., Gao, F.Q., Szilagyi, G., Nadkarni, N.K., St George-Hyslop, P., Black, S.E. (2008). Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Archives of Neurology, 65(6), 790795. doi:10.1001/archneur.65.6.790 Google Scholar
Price, C.C., Jefferson, A.L., Merino, J.G., Heilman, K.M., Libon, D.J. (2005). Subcortical vascular dementia: Integrating neuropsychological and neuroradiologic data. Neurology, 65(3), 376382. doi:10.1212/01.wnl.0000168877.06011.15 Google Scholar
Rascovsky, K., Salmon, D.P., Hansen, L.A., Thal, L.J., Galasko, D. (2007). Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. Neuropsychology, 21(1), 20.Google Scholar
Robinson, G., Shallice, T., Bozzali, M., Cipolotti, L. (2012). The differing roles of the frontal cortex in fluency tests. Brain, 135(Pt 7), 22022214. doi:10.1093/brain/aws142; 10.1093/brain/aws142 Google Scholar
Rosser, A., Hodges, J.R. (1994). Initial letter and semantic category fluency in Alzheimer's disease, Huntington's disease, and progressive supranuclear palsy. Journal of Neurology, Neurosurgery, and Psychiatry, 57(11), 13891394.Google Scholar
Salmon, D.P., Heindel, W.C., Lange, K.L. (1999). Differential decline in word generation from phonemic and semantic categories during the course of Alzheimer's disease: Implications for the integrity of semantic memory. Journal of the International Neuropsychological Society, 5(7), 692703.Google Scholar
Schmidt, R., Berghold, A., Jokinen, H., Gouw, A.A., van der Flier, W.M., Barkhof, F., … LADIS Study Group (2012). White matter lesion progression in LADIS: Frequency, clinical effects, and sample size calculations. Stroke, 43(10), 26432647. doi:10.1161/STROKEAHA.112.662593 Google Scholar
Spreen, O., Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms and commentary (2nd ed.). New York, NY: Oxford University Press.Google Scholar