Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T05:33:13.922Z Has data issue: false hasContentIssue false

Verbal Naming Test for Use with Older Adults: Development and Initial Validation

Published online by Cambridge University Press:  24 March 2015

Brian P. Yochim*
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California National Jewish Health, Denver, Colorado
Sherry A. Beaudreau
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California University of Queensland, Australia
J. Kaci Fairchild
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California
Maya V. Yutsis
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California
Neda Raymond
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California
Leah Friedman
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California
Jerome Yesavage
Affiliation:
VA Palo Alto Health Care System, Palo Alto, California Stanford University School of Medicine, Stanford, California
*
Correspondence and reprint requests to: Brian Yochim, National Jewish Health, 1400 Jackson Street, B134, Denver, CO 80206. E-mail: yochimb@njhealth.org

Abstract

Naming or word-finding tasks are a mainstay of the typical neuropsychological evaluation, particularly with older adults. However, many older adults have significant visual impairment and there are currently no such word-finding tasks developed for use with older visually impaired populations. This study presents a verbal, non-visual measure of word-finding for use in the evaluation of older adults with possible dysnomia. Stimuli were chosen based on their frequency of usage in everyday spoken language. A 60-item scale was created and given to 131 older Veterans. Rasch analyses were conducted and differential item functioning assessed to eliminate poorly-performing items. The final 55-item scale had a coefficient alpha of 0.84 and correlated with the Neuropsychological Assessment Battery Naming test, r=0.84, p<.01, Delis-Kaplan Executive Function System (D-KEFS) Category Fluency, r=0.45, p<.01, and the D-KEFS Letter Fluency, r=0.40, p<.01. ROC analyses found the measure to have sensitivity of 79% and specificity of 85% for detecting dysnomia. Patients with dysnomia performed worse on the measure than patients with intact word-finding, t(84)=8.2, p<.001. Patients with no cognitive impairment performed significantly better than patients with mild cognitive impairment, who performed significantly better than patients with dementia. This new measure shows promise in the neuropsychological evaluation of word-finding ability in older adults with or without visual impairment. Future directions include the development of a shorter version and the generation of additional normative data. (JINS, 2015, 21, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Balthazar, M.L.F., Yasuda, C.L., Pereira, F.R.S., Bergo, F.P.G., Cendes, F., & Damasceno, B.P. (2010). Coordinated and circumlocutory semantic naming errors are related to anterolateral temporal lobes in mild AD, amnestic mild cognitive impairment, and normal aging. Journal of the International Neuropsychological Society, 16, 10991107. doi:10.1017/S13556177100000998 CrossRefGoogle ScholarPubMed
Bauer, R.M. (2012). Agnosia. In K.M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (5th ed., pp. 238295). New York: Oxford University Press.Google Scholar
Beeson, P.M., & Rapcsak, S.Z. (2006). The aphasias. In P.J. Snyder, P.D. Nussbaum & D.L. Robins (Eds.), Clinical neuropsychology: A pocket handbook for assessment (2nd ed., pp. 436459). Washington, DC: American Psychological Association.Google Scholar
Bell, B.D., Seidenberg, M., Hermann, B.P., & Douville, K. (2003). Visual and auditory naming in patients with left or bilateral temporal lobe epilepsy. Epilepsy Research, 55, 2937. doi:10.1016/S0920-1211(03)00110-4 Google Scholar
Benton, A.L., Sivan, A.B., de Hamsher, K.S., Varney, N.R., & Spreen, O. (1994). Contributions to neuropsychological assessment (2nd ed.). Orlando, FL: Psychological Assessment Resources, Inc.Google Scholar
Benton, A.L., Varney, N.R., & Hamsher, K. (1978). Visuospatial judgment: A clinical test. Archives of Neurology, 35, 364367.Google Scholar
Blumenfeld, H. (2010). Neuroanatomy through clinical cases (2nd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
Bond, T.G., & Fox, C.M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). New York: Routledge.Google Scholar
Brier, M.R., Maguire, M.J., Tillman, G.D., Hart, J., & Kraut, M.A. (2008). Event-related potentials in semantic memory retrieval. Journal of the International Neuropsychological Society, 14, 815822. doi:10.1017/S135561770808096X Google Scholar
Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977990.Google Scholar
Chiang, H.-S., Mudar, R.A., Spence, J.S., Pudhiyidath, A., Eroh, J., DeLaRosa, B., … Hart, J. (2014). Age-related changes in feature-based object memory retrieval as measured by event-related potentials. Biological Psychology, 100, 106114. http://dx.doi.org/10.1016/j.biopsycho.2014.05.010 Google Scholar
Cullum, C.M., Weiner, M.F., Gehrmann, H.R., & Hynan, L.S. (2006). Feasibility of telecognitive assessment in dementia. Assessment, 13(4), 385390. doi:10.1177/1073191106289065 Google Scholar
Damasio, A.R., & Damasio, H. (1992). Brain and language. Scientific American, 267, 8895.CrossRefGoogle ScholarPubMed
Damasio, A.R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences, of the United States of America, 90, 49574960.Google Scholar
Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D., Kramer, J., Kaplan, E., & Ober, B. (2000). California Verbal Learning Test – 2nd edition: Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Eye Diseases Prevalence Research Group. (2004). Causes and prevalence of visual impairment among adults in the United States. Archives of Ophthalmology, 122, 477485.Google Scholar
Francis, W., & Kučera, H. (1982). Frequency analysis of English usage: Lexicon and grammar. Boston: Houghton Mifflin.Google Scholar
Goodglass, H., Kaplan, E., & Barresi, B. (2001). The assessment of aphasia and related disorders (3rd ed.). Austin, TX: Pro-Ed. Google Scholar
Goodglass, H., & Wingfield, A. (Eds.). (1997). Anomia: Neuroanatomical and cognitive correlates. San Diego, CA: Academic Press.Google Scholar
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., … Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 10061014.Google Scholar
Grosch, M.C., Gottlieb, M.C., & Cullum, C.M. (2011). Initial practice recommendations for teleneuropsychology. The Clinical Neuropsychologist, 25(7), 11191133. doi:10.1080/13854046.2011.609840 Google Scholar
Grossman, M., McMillan, C., Moore, P., Ding, L., Glosser, G., Work, M., & Gee, J. (2004). What’s in a name: Voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain, 127, 628649. doi:10.1093/brain/awh075 Google Scholar
Hamberger, M.J., Goodman, R.R., Perrine, K., & Tamny, T. (2001). Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology, 56, 5661.Google Scholar
Hamberger, M.J., & Seidel, W.T. (2003). Auditory and visual naming tests: Normative and patient data for accuracy, response time, and tip-of-the-tongue. Journal of the International Neuropsychological Society, 9, 479489.Google Scholar
Hamberger, M.J., Seidel, W.T., McKhann, G.M., & Goodman, R.R. (2010). Hippocampal removal affects visual but not auditory naming. Neurology, 74, 14881493. doi:10.1212/WNL.0b013e3181dd40f0 Google Scholar
Hodges, J.R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33(4), 441459.Google Scholar
Huey, E.D., Goveia, E.N., Paviol, S., Pardini, M., Krueger, F., Zamboni, G., … Grafman, J. (2009). Executive dysfunction in frontotemporal dementia and corticobasal syndrome. Neurology, 72(5), 453459.Google Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1978). The Boston Naming Test: Experimental edition. Boston: Kaplan & Goodglass.Google Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (2001). The Boston Naming Test (2nd ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Kirshner, H.S., Webb, W.G., & Kelly, M.P. (1984). The naming disorder of dementia. Neuropsychologia, 22(1), 2330.Google Scholar
Kohn, S.E., Lorch, M.P., & Pearson, D.M. (1989). Verb finding in aphasia. Cortex, 25, 5769.Google Scholar
Kučera, H., & Francis, W. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.Google Scholar
Laine, M., & Martin, N. (2006). Anomia: Theoretical and clinical aspects. New York, NY: Psychology Press.Google Scholar
Lee, A.G., & Coleman, A.L. (2004). Research agenda-setting program for geriatric ophthalmology. Journal of the American Geriatrics Society, 52, 453458.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.Google Scholar
Malow, B.A., Blaxton, T.A., Sato, S., Bookheimer, S.Y., Kufta, C.V., Figlozzi, C.M., & Theodore, W.H. (1996). Cortical stimulation elicits regional distinctions in auditory and visual naming. Epilepsia, 37(3), 245252.Google Scholar
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., … Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 263269. doi:10.1016/j.jalz.2011.03.005 CrossRefGoogle ScholarPubMed
Miceli, G., Silveri, M.C., Nocentini, U., & Caramazza, A. (1988). Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology, 2, 351358.Google Scholar
Miller, K.M., Finney, G.R., Meador, K.J., & Loring, D.W. (2010). Auditory responsive naming versus visual confrontation naming in dementia. The Clinical Neuropsychologist, 24, 103118. doi:10.1080/13854040903045074 Google Scholar
Nebes, R.D. (1989). Semantic memory in Alzheimer’s disease. Psychological Bulletin, 106(3), 377394. doi:10.1037/0033-2909.106.3.377 Google Scholar
Nicholas, M., Barth, C., Obler, L.K., Au, R., & Albert, M.L. (1997). Naming in normal aging and dementia of the Alzheimer’s type. In H. Goodglass & A. Wingfield (Eds.), Anomia: Neuroanatomical and cognitive deficits (pp. 527). San Diego, CA: Academic Press.Google Scholar
Niemeier, J.P. (2010). Neuropsychological assessment for visually impaired persons with traumatic brain injury. Neurorehabilitation, 27, 275283. doi:10.3233/NRE-2010-0609 Google Scholar
Obler, L.K., & Albert, M.L. (1979). Action naming test. Unpublished experimental edition.Google Scholar
Plassman, B.L., Langa, K.M., Fisher, G.G., Heeringa, S.G., Weir, D.R., Ofstedal, M.B., … Wallace, R.B. (2007). Prevalence of dementia in the United States: The Aging, Demographics, and Memory Study. Neuroepidemiology, 29, 125132. doi:10.1159/000109998 Google Scholar
Rabin, L.A., Barr, W.B., & Burton, L.A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology, 20, 3365.Google Scholar
Randolph, C. (1998). Repeatable battery for the assessment of neuropsychological status. San Antonio, TX: The Psychological Corporation.Google Scholar
Randolph, C., Lansing, A.E., Ivnik, R.J., Cullum, C.M., & Hermann, B.P. (1999). Determinants of confrontation naming performance. Archives of Clinical Neuropsychology, 14(6), 489496.Google Scholar
Ryskulova, A., Turczyn, T., Makuc, D., Cotch, M.F., Klein, R.J., & Janiszewski, R. (2008). Self-reported age-related eye diseases and visual impairment in the United States: Results of the 2002 National Health Interview Survey. American Journal of Public Health, 98, 454461.Google Scholar
Simmons, W.K., & Martin, A. (2009). The anterior temporal lobes and the functional architecture of semantic memory. Journal of the International Neuropsychological Society, 15, 645649. doi:10.1017/S1355617709990348 CrossRefGoogle ScholarPubMed
Skelton-Robinson, M., & Jones, S. (1984). Nominal dysphasia and the severity of senile dementia. British Journal of Psychiatry, 145, 168171.Google Scholar
Stern, R.A., & White, T. (2003). Neuropsychological Assessment Battery: Administration, Scoring, and Interpretation Manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.Google Scholar
Trahan, D.E. (1998). Judgment of line orientation in patients with unilateral cerebrovascular lesions. Assessment, 5(3), 227235.Google Scholar
Tranel, D., Vianna, E., Manzel, K., Damasio, H., & Grabowski, T. (2009). Neuroanatomical correlates of the Benton facial recognition test and judgment of line orientation test. Journal of Clinical and Experimental Neuropsychology, 31(2), 219233. doi:10.1080/13803390802317542 Google Scholar
Welch, L.W., Doineau, D., Johnson, S., & King, D. (1996). Educational and gender normative data for the Boston Naming Test in a group of older adults. Brain and Language, 53, 260266.Google Scholar
White, T., & Stern, R.A. (2003). Neuropsychological assessment battery: Psychometric and technical manual. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Yochim, B., Baldo, J., Nelson, A., & Delis, D.C. (2007). D-KEFS Trail Making Test performance in patients with lateral prefrontal cortex lesions. Journal of the International Neuropsychological Society, 13(04), 704709.CrossRefGoogle ScholarPubMed
Yochim, B.P., Kane, K.D., & Mueller, A.E. (2009). Naming test of the Neuropsychological Assessment Battery: Convergent and discriminant validity. Archives of Clinical Neuropsychology, 24, 575583. doi:10.1093/arclin/acp053 Google Scholar
Yochim, B.P., Rashid, K., Raymond, N., & Beaudreau, S.A. (2013). How frequently are words used on naming tests used in spoken conversation? The Clinical Neuropsychologist, 27(6), 973987. doi:10.1080/13854046.2013.797501 Google Scholar
Zec, R.F., Burkett, N.R., Markwell, S.J., & Larsen, D.L. (2007). A cross-sectional study of the effects of age, education, and gender on the Boston Naming Test. The Clinical Neuropsychologist, 21, 587616. doi:10.1080/13854040701220028 Google Scholar