Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-20T04:02:43.709Z Has data issue: false hasContentIssue false

Altered learning from positive feedback in adolescents with anorexia nervosa

Published online by Cambridge University Press:  18 September 2024

Blair Uniacke*
Affiliation:
Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
Wouter van den Bos
Affiliation:
Department of Psychology – Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
Joseph Wonderlich
Affiliation:
Sanford Center for Biobehavioral Research, Sanford Health, Fargo, ND, USA
Jessica Ojeda
Affiliation:
Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
Jonathan Posner
Affiliation:
Department of Psychiatry, Duke University, Durham, NC, USA
Joanna E. Steinglass
Affiliation:
Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
Karin Foerde
Affiliation:
Department of Psychology – Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
*
Corresponding author: Blair Uniacke; Email: blair.uniacke@nyspi.columbia.edu

Abstract

Objective:

Anorexia nervosa (AN) is characterized by severe restriction of calorie intake, which persists despite serious medical and psychological sequelae of starvation. Several prior studies have identified impaired feedback learning among individuals with AN, but whether it reflects a disturbance in learning from positive feedback (i.e., reward), negative feedback (i.e., punishment), or both, and the extent to which this impairment is related to severity and duration of illness, has not been clarified.

Method:

Participants were female adolescents with AN (n = 76) and healthy teen volunteers (HC; n = 38) between the ages of 12–18 years who completed a probabilistic reinforcement learning task. A Bayesian reinforcement learning model was used to calculate separate learning rates for positive and negative feedback. Exploratory analyses examined associations between feedback learning and duration of illness, eating disorder severity, and self/parent reports of reward and punishment sensitivity.

Results:

Adolescents with AN had a significantly lower rate of learning from positive feedback relative to HC. Patients and HC did not differ in learning from negative feedback or on overall task performance measures. Feedback learning parameters were not significantly associated with duration of illness, eating disorder severity, or questionnaire-based reports of reward and punishment sensitivity.

Conclusion:

Adolescents with AN showed a circumscribed deficit in learning from reward that was not associated with duration of illness or reported sensitivity to reward or punishment. Subsequent longitudinal research should explore whether differences in learning from positive feedback relate to course of illness in youth with AN.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th edn). American Psychiatric Association.Google Scholar
Atiye, M., Miettunen, J., & Raevuori-Helkamaa, A. (2015). A meta-analysis of temperament in eating disorders. European Eating Disorder Review, 23(2), 8999. https://doi.org/10.1002/erv.2342 CrossRefGoogle ScholarPubMed
Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4-5), 407419. https://doi.org/10.1016/s0028-3908(98)00033-1 CrossRefGoogle ScholarPubMed
Bernardoni, F., Geisler, D., King, J. A., Javadi, A.-H., Ritschel, F., Murr, J., Reiter, A. M. F., Rössner, V., Smolka, M. N., Kiebel, S., Ehrlich, S. (2018). Altered medial frontal feedback learning signals in anorexia nervosa. Biological Psychiatry, 83(3), 235243. https://doi.org/10.1016/j.biopsych.2017.07.024 CrossRefGoogle ScholarPubMed
Bernardoni, F., King, J. A., Geisler, D., Ritschel, F., Schwoebel, S., Reiter, A. M. F., Endrass, T., Rössner, V., Smolka, M. N., Ehrlich, S. (2021). More by stick than by carrot: A reinforcement learning style rooted in the medial frontal cortex in anorexia nervosa. Journal of Abnormal Psychology, 130(7), 736747. https://doi.org/10.1037/abn0000690 CrossRefGoogle Scholar
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319333. https://doi.org/10.1037/0022-3514.67.2.319 CrossRefGoogle Scholar
Cohen, J. R., Asarnow, R. F., Sabb, F. W., Bilder, R. M., Bookheimer, S. Y., Knowlton, B. J., & Poldrack, R. A. (2010). A unique adolescent response to reward prediction errors. Nature Neuroscience, 13(6), 669671. https://doi.org/10.1038/nn.2558 CrossRefGoogle ScholarPubMed
Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load strengthens reward prediction errors. Jouurnal of Neuroscience, 37(16), 43324342. https://doi.org/10.1523/jneurosci.2700-16.2017 Google ScholarPubMed
Cutler, J., Apps, M. A., & Lockwood, P. (2022). Reward processing and reinforcement learning: From adolescence to aging. PsyArXiv. https://doi.org/10.31234/osf.io/pnuk8 Google Scholar
Davidow, J. Y., Foerde, K., Galván, A., & Shohamy, D. (2016). An upside to reward sensitivity: The hippocampus supports enhanced reinforcement learning in adolescence. Neuron, 92(1), 9399. https://doi.org/10.1016/j.neuron.2016.08.031 CrossRefGoogle ScholarPubMed
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on human’s choices and striatal prediction errors. Neuron, 69(6), 12041215. https://doi.org/10.1016/j.neuron.2011.02.027 CrossRefGoogle ScholarPubMed
DeGuzman, M., Shott, M. E., Yang, T. T., Riederer, J., & Frank, G. K. W. (2017). Association of elevated reward prediction error response with weight gain in adolescent anorexia nervosa. The American Journal of Psychiatry, 174(6), 557565. https://doi.org/10.1176/appi.ajp.2016.16060671 CrossRefGoogle ScholarPubMed
Dyall, S. C. (2015). Long-Chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience, 7, 52. https://doi.org/10.3389/fnagi.2015.00052 CrossRefGoogle Scholar
Eckstein, M. K., Master, S. L., Xia, L., Dahl, R. E., Wilbrecht, L., & Collins, A. G. E. (2022). The interpretation of computational model parameters depends on the context. eLife, 11,  e75474. https://doi.org/10.7554/eLife.75474 CrossRefGoogle ScholarPubMed
Endrass, T., Koehne, S., Riesel, A., & Kathmann, N. (2013). Neural correlates of feedback processing in obsessive - compulsive disorder. Journal of Abnormal Psychology, 122(2), 387396. https://doi.org/10.1037/a0031496 CrossRefGoogle ScholarPubMed
Fairburn, C. G. (2008). Cognitive behavior Therapy and eating disorders. Guilford Press.Google ScholarPubMed
First, M. B. (2014). Structured clinical interview for the DSM (SCID). In The encyclopedia of clinical psychology (pp. 16).Google Scholar
Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences of the United States of America, 103(31), 1177811783. https://doi.org/10.1073/pnas.0602659103 CrossRefGoogle ScholarPubMed
Foerde, K., Race, E., Verfaellie, M., & Shohamy, D. (2013). A role for the medial temporal lobe in feedback-driven learning: evidence from amnesia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(13), 56985704. https://doi.org/10.1523/JNEUROSCI.5217-12.2013 CrossRefGoogle Scholar
Foerde, K., & Steinglass, J. E. (2017). Decreased feedback learning in anorexia nervosa persists after weight restoration. International Journal of Eating Disorders, 50(4), 415423. https://doi.org/10.1002/eat.22709 CrossRefGoogle ScholarPubMed
Foerde, K., Walsh, B. T., Dalack, M., Daw, N., Shohamy, D., & Steinglass, J. E. (2021). Changes in brain and behavior during food-based decision-making following treatment of anorexia nervosa. Journal of Eating Disorders, 9(1), 48. https://doi.org/10.1186/s40337-021-00402-y CrossRefGoogle ScholarPubMed
Frank, G. K. W., DeGuzman, M. C., Shott, M. E., Laudenslager, M. L., Rossi, B., & Pryor, T. (2018). Association of brain reward learning response with harm avoidance, weight gain, and hypothalamic effective connectivity in adolescent anorexia nervosa. JAMA Psychiatry, 75(10), 10711080. https://doi.org/10.1001/jamapsychiatry.2018.2151 CrossRefGoogle ScholarPubMed
Geisler, D., Ritschel, F., King, J. A., Bernardoni, F., Seidel, M., Boehm, I., Runge, F., Goschke, T., Roessner, V., Smolka, M. N., & Ehrlich, S. (2017). Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa. Scientific Reports, 7, 42066. https://doi.org/10.1038/srep42066 CrossRefGoogle ScholarPubMed
Gilsbach, S., Plana, M. T., Castro-Fornieles, J., Gatta, M., Karlsson, G. P., Flamarique, I., Raynaud, J.-P., Riva, A., Solberg, A.-L., van Elburg, A. A., Wentz, E., Nacinovich, R., Herpertz-Dahlmann, B. (2022). Increase in admission rates and symptom severity of childhood and adolescent anorexia nervosa in Europe during the COVID-19 pandemic: Data from specialized eating disorder units in different European countries. Child and Adolescent Psychiatry and Mental Health, 16(1), 46. https://doi.org/10.1186/s13034-022-00482-x CrossRefGoogle ScholarPubMed
Glashouwer, K. A., Bloot, L., Veenstra, E. M., Franken, I. H., & de Jong, P. J. (2014). Heightened sensitivity to punishment and reward in anorexia nervosa. Appetite, 75, 97102. https://doi.org/10.1016/j.appet.2013.12.019 CrossRefGoogle ScholarPubMed
Gluck, M. A., Shohamy, D., & Myers, C. (2002). How do people solve the “weather prediction” task?: Individual variability in strategies for probabilistic category learning. Learning & Memory (Cold Spring Harbor, N.Y.), 9(6), 408418. https://doi.org/10.1101/lm.45202 CrossRefGoogle ScholarPubMed
Herpertz-Dahlmann, B. (2015). Adolescent eating disorders: Update on definitions, symptomatology, epidemiology, and comorbidity. Child and Adolescent Psychiatric Clinics of North America, 24(1), 177196. https://doi.org/10.1016/j.chc.2014.08.003 CrossRefGoogle ScholarPubMed
Hopkins, R. O., Myers, C. E., Shohamy, D., Grossman, S., & Gluck, M. (2004). Impaired probabilistic category learning in hypoxic subjects with hippocampal damage. Neuropsychologia, 42(4), 524535. https://doi.org/10.1016/j.neuropsychologia.2003.09.005 CrossRefGoogle ScholarPubMed
Jappe, L. M., Frank, G. K. W., Shott, M. E., Rollin, M. D. H., Pryor, T., Hagman, J. O., Yang, T. T., Davis, E. (2011). Heightened sensitivity to reward and punishment in anorexia nervosa. International Journal of Eating Disorders, 44(4), 317324. https://doi.org/10.1002/eat.20815 CrossRefGoogle ScholarPubMed
Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Powers, A., Mehta, N., Dyke, J., Casey, B. J. (2014). Adolescent-specific patterns of behavior and neural activity during social reinforcement learning. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 683697. https://doi.org/10.3758/s13415-014-0257-z CrossRefGoogle ScholarPubMed
Jonker, N. C., Glashouwer, K. A., Hoekzema, A., Ostafin, B. D., & de Jong, P. J. (2020). Heightened self-reported punishment sensitivity, but no differential attention to cues signaling punishment or reward in anorexia nervosa. PLoS One, 15(3), e0229742. https://doi.org/10.1371/journal.pone.0229742 CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., Williamson, D, & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980988. https://doi.org/10.1097/00004583-199707000-00021 CrossRefGoogle ScholarPubMed
Khalsa, S. S., Portnoff, L. C., McCurdy-McKinnon, D., & Feusner, J. D. (2017). What happens after treatment? A systematic review of relapse, remission, and recovery in anorexia nervosa. Jouurnal of Eating Disorders, 5(1), 20. https://doi.org/10.1186/s40337-017-0145-3 CrossRefGoogle ScholarPubMed
Khdour, H. Y., Abushalbaq, O. M., Mughrabi, I. T., Imam, A. F., Gluck, M. A., Herzallah, M. M., & Moustafa, A. A. (2016). Generalized anxiety disorder and social anxiety disorder, but not panic anxiety disorder, are associated with higher sensitivity to learning from negative feedback: Behavioral and computational investigation. Frontiers in Integrative Neuroscience, 10, 20. https://doi.org/10.3389/fnint.2016.00020 CrossRefGoogle Scholar
Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science (New York, N.Y.), 273(5280), 13991402. https://doi.org/10.1126/science.273.5280.1399 CrossRefGoogle ScholarPubMed
Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning & Memory (Cold Spring Harbor, N.Y.), 1(2), 106–120.CrossRefGoogle ScholarPubMed
Kontis, D., & Theochari, E., 2012. Dopamine in anorexia nervosa: a systematic review. Behavioural Pharmacology, 23(5-6), 496–515. https://doi.org/10.1097/FBP.0b013e328357e115 CrossRefGoogle Scholar
Mallick, R., Basak, S., & Duttaroy, A. K. (2019). Docosahexaenoic acid, 22:6n-3: Its roles in the structure and function of the brain. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 79, 21–31. https://doi.org/10.1016/j.ijdevneu.2019.10.004 CrossRefGoogle ScholarPubMed
Marzuki, A. A., Tomić, I., Ip, S. H. Y., Gottwald, J., Kanen, J. W., Kaser, M., Sule, A., Conway-Morris, A., Sahakian, B. J., Robbins, T. W. (2021). Association of environmental uncertainty with altered decision-making and learning mechanisms in youths with obsessive-compulsive disorder. JAMA Network Open, 4(11), e2136195. https://doi.org/10.1001/jamanetworkopen.2021.36195 CrossRefGoogle ScholarPubMed
Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R., Wilbrecht, L., & Collins, A. G. E. (2020). Distentangling the systems contributing to changes in learning during adolescence. Developmental Cognitive Neuroscience, 41, 100732. https://doi.org/10.1016/j.dcn.2019.100732 CrossRefGoogle ScholarPubMed
Matton, A., Goossens, L., Vervaet, M., & Braet, C. (2015). Temperamental differences between adolescents and young adults with or without an eating disorder. Comprehensive Psychiatry, 56, 229238. https://doi.org/10.1016/j.comppsych.2014.09.005 CrossRefGoogle ScholarPubMed
Monteleone, P., Scognamiglio, P., Monteleone, A. M., Perillo, D., & Maj, M. (2014). Cortisol awakening response in patients with anorexia nervosa or bulimia nervosa: Relationships to sensitivity to reward and sensitivity to punishment. Psychological Medicine, 44(12), 26532660. https://doi.org/10.1017/s0033291714000270 CrossRefGoogle ScholarPubMed
Mörkl, S., Blesl, C., Jahanshahi, M., Painold, A., & Holl, A. K. (2016). Impaired probabilistic classification learning with feedback in patients with major depression. Neurobiology of Learning and Memory, 127, 4855. https://doi.org/10.1016/j.nlm.2015.12.001 CrossRefGoogle ScholarPubMed
Murray, S. B., Strober, M., Le Grange, D., Schauer, R., Craske, M. G., & Zbozinek, T. D. (2024). A multi-modal assessment of fear conditioning in adolescent anorexia nervosa. The International Journal of Eating Disorders. https://doi-org.ezproxy.cul.columbia.edu/10.1002/eat.24180 CrossRefGoogle ScholarPubMed
Nussenbaum, K., & Hartley, C. A. (2019). Reinforcement learning across development: What insights can we draw from a decade of research? Developmental Cognitive Neuroscience, 40, 100733. https://doi.org/10.1016/j.dcn.2019.100733 CrossRefGoogle ScholarPubMed
Pauli, R., Brazil, I. A., Kohls, G., Klein-Flügge, M. C., Rogers, J. C., Dikeos, D., Dochnal, R., Fairchild, G., Fernández-Rivas, A., Herpertz-Dahlmann, B., Hervas, A., Konrad, K., Popma, A., Stadler, C., Freitag, C. M., De Brito, S. A., & Lockwood, P. L. (2023). Action initiation and punishment learning differ from childhood to adolescence while reward learning remains stable. Nature Communications, 14(1), 5689. https://doi.org/10.1038/s41467-023-41124-w CrossRefGoogle ScholarPubMed
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414(6863), 546550. https://doi.org/10.1038/35107080 CrossRefGoogle ScholarPubMed
Ranzenhofer, L. M., Jablonski, M., Davis, L., Posner, J., Walsh, B. T., & Steinglass, J. E. (2022). Early course of symptom development in anorexia nervosa. The Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine, 71(5), 587593. https://doi.org/10.1016/j.jadohealth.2022.06.010 CrossRefGoogle ScholarPubMed
Ritschel, F., Geisler, D., King, J. A., Bernardoni, F., Seidel, M., Boehm, I., Vettermann, R., Biemann, R., Roessner, V., Smolka, M. N., Ehrlich, S. (2017). Neural correlates of altered feedback learning in women recovered from anorexia nervosa. Scientific Reports, 7(1), 5421. https://doi.org/10.1038/s41598-017-04761-y CrossRefGoogle ScholarPubMed
Shohamy, D., Myers, C. E., Grossman, S., Sage, J., Gluck, M. A., & Poldrack, R. A. (2004). Cortico-Striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain: A Journal of Neurology, 127(Pt 4), 851859. https://doi.org/10.1093/brain/awh100 CrossRefGoogle ScholarPubMed
Shohamy, D., Myers, C. E., Onlaor, S., & Gluck, M. A. (2004). Role of the basal ganglia in category learning: how do patients with Parkinson’s disease learn?. Behavioral Neuroscience, 118(4), 676686. https://doi.org/10.1037/0735-7044.118.4.676 CrossRefGoogle ScholarPubMed
Society for Adolescent Health and Medicine (2022). Medical management of restrictive eating disorders in adolescents and young adults. The Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine, 71(5), 648654. https://doi.org/10.1016/j.jadohealth.2022.08.006 CrossRefGoogle Scholar
Södersten, P., Bergh, C., Leon, M., & Zandian, M. (2016). Dopamine and anorexia nervosa. Neuroscience and Biobehavioral Reviews, 60, 2630. https://doi.org/10.1016/j.neubiorev.2015.11.003 CrossRefGoogle ScholarPubMed
Spear, L. P. (2013). Adolescent neurodevelopment. The Journal of Adolescent Health: Official Publication of the Society for Adolescent Medicine, 52(2 Suppl 2), S7S13. https://doi.org/10.1016/j.jadohealth.2012.05.006 CrossRefGoogle ScholarPubMed
Spektor, M. S., & Kellen, D. (2018). The relative merit of empirical priors in non-identifiable and sloppy models: Applications to models of learning and decision-making: Empirical priors. Psychonomic Buletin & Review, 25(6), 20472068. https://doi.org/10.3758/s13423-018-1446-5 CrossRefGoogle ScholarPubMed
Sysko, R., Glasofer, D. R., Hildebrandt, T., Klimek, P., Mitchell, J. E., Berg, K. C., Peterson, C. B., Wonderlich, S. A., Walsh, B. T. (2015). The eating disorder assessment for DSM-5 (EDA-5): Development and validation of a structured interview for feeding and eating disorders. The International Journal of Eating Disorders, 48(5), 452463. https://doi.org/10.1002/eat.22388 CrossRefGoogle ScholarPubMed
Torrubia, R., Avila, C., Molto, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences, 31(6), 837862. https://doi.org/10.1016/S0191-8869(00)00183-5 CrossRefGoogle Scholar
van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012). Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cerebral Cortex, 22(6), 12471255. https://doi.org/10.1093/cercor/bhr198 CrossRefGoogle ScholarPubMed
van den Bos, W., Güroğlu, B., van den Bulk, B. G., Rombouts, S. A., & Crone, E. A. (2009). Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Frontiers in Human Neuroscience, 3, 52. https://doi.org/10.3389/neuro.09.052.2009 CrossRefGoogle ScholarPubMed
Verharen, J. P. H., Danner, U. N., Schröder, S., Aarts, E., van Elburg, A. A., & Adan, R. A. H. (2019). Insensitivity to losses: A core feature in patients with anorexia nervosa? Biological Psychiatry: Cognitive Neuroscience Neuroimaging, 4(11), 9951003. https://doi.org/10.1016/j.bpsc.2019.05.001 Google ScholarPubMed
Wechsler, D. (2011). Wechsler abbreviated scale of intelligence – Second edition (WASI-II). NCSPearson.Google Scholar
Wierenga, C. E., Reilly, E., Bischoff-Grethe, A., Kaye, W. H., & Brown, G. G. (2022). Altered reinforcement learning from reward and punishment in anorexia nervosa: Evidence from computational modeling. Journal of the International Neuropsychological Society, 28(10), 10031015. https://doi.org/10.1017/s1355617721001326 CrossRefGoogle ScholarPubMed
Supplementary material: File

Uniacke et al. supplementary material

Uniacke et al. supplementary material
Download Uniacke et al. supplementary material(File)
File 30.5 KB