Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T07:17:47.320Z Has data issue: false hasContentIssue false

Amnestic mild cognitive impairment: Diagnostic outcomes and clinical prediction over a two-year time period

Published online by Cambridge University Press:  22 March 2006

H. RANDALL GRIFFITH
Affiliation:
Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama Alzheimer's Disease Research Center, University of Alabama at Birmingham, Birmingham, Alabama
KELLI L. NETSON
Affiliation:
Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
LINDY E. HARRELL
Affiliation:
Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama Alzheimer's Disease Research Center, University of Alabama at Birmingham, Birmingham, Alabama
EDWARD Y. ZAMRINI
Affiliation:
Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama Alzheimer's Disease Research Center, University of Alabama at Birmingham, Birmingham, Alabama
JOHN C. BROCKINGTON
Affiliation:
Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama Alzheimer's Disease Research Center, University of Alabama at Birmingham, Birmingham, Alabama
DANIEL C. MARSON
Affiliation:
Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama Alzheimer's Disease Research Center, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Amnestic mild cognitive impairment (MCI) has been defined as a precursor to Alzheimer's disease (AD), although it is sometimes difficult to identify which persons with MCI will eventually convert to AD. We sought to predict MCI conversion to AD over a two-year follow-up period using baseline demographic and neuropsychological test data from 49 MCI patients. Using a stepwise discriminant function analysis with Dementia Rating Scale (DRS) Initiation/Perseveration and Wechsler Memory Scale, third edition (WMS-III) Visual Reproduction Percent Retention scores, we correctly classified 85.7% of the sample as either AD converters or MCI nonconverters, with 76.9% sensitivity and 88.9% specificity. Adding race, the presence of vascular risk factors, or cholinesterase inhibitor use to the analysis did not greatly change the classification rates obtained with neuropsychological test data. Examining neuropsychological test cutoff scores revealed that DRS Initiation/Perseveration scores below 37 and Visual Reproduction Percent Retention scores below 26% correctly identified AD converters with 76.9% sensitivity and 91.7% specificity. These results demonstrate that commonly administered neuropsychological tests identify persons with MCI at baseline who are at risk for conversion to AD within 1–2 years. Such methods could aid in identifying MCI patients who might benefit from early treatment, in providing prognostic information to patients, and identifying potential clinical trial participants. (JINS, 2006, 12, 166–175.)

Type
Research Article
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.S., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.CrossRefGoogle Scholar
Benton, A.L. & Hamsher, K. (1983). Multilingual Aphasia Examination. Iowa City, IA: AJA Associates.
Bowen, J., Teri, L., Kukull, W., McCormick, W., McCurrry, S., & Larson, E. (1997). Progression to dementia in patients with isolated memory loss. Lancet, 349, 763765.Google Scholar
Bozoki, A., Giordani, B., Heidebrink, J.L., Berent, S., & Foster, N.L. (2001). Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Archives of Neurology, 58, 411416.Google Scholar
Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of a new verbal memory test with six equivalent forms. The Clinical Neuropsychologist, 5, 124142.Google Scholar
Butters, M., Salmon, D., & Butters, N. (1994). Neuropsychological assessment of dementia. In M. Storandt & G. VandenBos (Eds.), Neuropsychological assessment of dementia and depression in older adults: A clinician's guide (pp. 3359). Washington, DC: American Psychological Association.
Daly, E., Zaitchik, D., Copeland, M., Schmahmann, J., Gunther, J., & Albert, M. (2000). Predicting conversion to Alzheimer disease using standardized clinical information. Archives of Neurology, 57, 675680.CrossRefGoogle Scholar
DeCarli, C., Mungas, D., Harvey, D., Reed, B., Weiner, M., Chui, H., & Jagust, W. (2004). Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology, 63, 220227.CrossRefGoogle Scholar
Folstein, M., Folstein, S., & McHugh, P. (1975). Mini-Mental State: A practical guide for grading the cognitive state of the patient for the physician. Journal of Psychiatry Research, 12, 189198.CrossRefGoogle Scholar
Ganguli, M., Dodge, H., Shen, C., & DeKosky, S.T. (2004). Mild cognitive impairment, amnestic type: An epidemiological study. Neurology, 63, 115121.Google Scholar
Hachinski, V.C., Iliff, L.D., Zilhka, E., Du Boulay, G.H., McAllister, V.L., Marshall, J., Russell, R.W., & Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology, 32, 632637.Google Scholar
Ingles, J.L., Fisk, J.D., Merry, H.R., & Rockwood, K. (2003). Five-year outcomes for dementia defined solely by neuropsychological test performance. Neuroepidemiology, 22, 172178.Google Scholar
Jack, C.R., Jr., Petersen, R.C., Xu, Y.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.Google Scholar
Jacobson, M.W., Delis, D.C., Bondi, M.W., & Salmon, D.P. (2002). Do neuropsychological tests detect preclinical Alzheimer's disease: Individual-test versus cognitive-discrepancy score analyses. Neuropsychology, 16, 132139.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger.
Kurz, X., Scuvee-Moreau, J., Vernooij-Dassen, M., & Dresse, A. (2003). Cognitive impairment, dementia and quality of life in patients and caregivers. Acta Neurologica Belgica, 103, 2434.Google Scholar
Lange, K.L., Bondi, M.W., Salmon, D.P., Galasko, D., Delis, D.C., Thomas, R.G., & Thal, L.J. (2002). Decline in verbal memory during preclinical Alzheimer's disease: Examination of the effect of APOE genotype. Journal of the International Neuropsychological Society, 8, 943955.Google Scholar
Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.
Malouf, R. & Birks, J. (2004). Donepezil for vascular cognitive impairment. Cochrane Database System Review (1), CD004395.Google Scholar
Marquis, S., Moore, M.M., Howieson, D.B., Sexton, G., Payami, H., Kaye, J.A., & Camicioli, R. (2002). Independent predictors of cognitive decline in healthy elderly persons. Archives of Neurology, 59, 601606.Google Scholar
Marson, D. (2001). Loss of financial capacity in dementia: Conceptual and empirical approaches. Aging, Neuropsychology and Cognition, 8, 164181.CrossRefGoogle Scholar
Marson, D., Dymek, M., & Geyer, J. (2001). Informed consent, competency, and the neurologist. Neurologist, 7, 317326.Google Scholar
Masur, D., Sliwinski, M., Lipton, R., Blau, A., & Crystal, H. (1994). Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology, 44, 14271432.Google Scholar
Mattis, S. (1988). Dementia Rating Scale (DRS). Odessa, FL: Psychological Assessment Resources.
McDowell, I. (2001). Alzheimer's disease: Insights from epidemiology. Aging (Milano), 13, 143162.Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939944.CrossRefGoogle Scholar
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.Google Scholar
Morris, J.C. (1997). Clinical Dementia Rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9 Suppl. 1, 173–176; discussion 177–178.CrossRefGoogle Scholar
Mungas, D., Reed, B.R., Jagust, W.J., DeCarli, C., Mack, W.J., Kramer, J.H., Weiner, M.W., Schuff, N., & Chui, H.C. (2002). Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology, 59, 867873.Google Scholar
Pasquier, F. (1999). Early diagnosis of dementia: Neuropsychology. Journal of Neurology, 246, 615.CrossRefGoogle Scholar
Petersen, R.C. (2000). Mild cognitive impairment: Transition between aging and Alzheimer's disease. Neurologia, 15, 93101.Google Scholar
Petersen, R.C., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Schaid, D.J., Thibodeau, S.N., Kokmen, E., Waring, S.C., & Kurland, L.T. (1995). Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. Journal of the American Medical Association, 273, 12741278.Google Scholar
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle Scholar
Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L., & DeKosky, S.T. (2001). Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56, 11331142.Google Scholar
Petersen, R.C., Thomas, R.G., Grundman, M., Bennett, D., Doody, R., Ferris, S., Galasko, D., Jin, S., Kaye, J., Levey, A., Pfeiffer, E., Sano, M., van Dyck, C.H., & Thal, L.J. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine, 352, 23792388.Google Scholar
Petersen, R.C., Waring, S.C., Smith, G.E., Tangalos, E.G., & Thibodeau, S.N. (1996). Predictive value of APOE genotyping in incipient Alzheimer's disease. Annals of the New York Academy of Science, 802, 5869.CrossRefGoogle Scholar
Reisberg, B., Ferris, S., deLeon, M., & Crook, T. (1982). The Global Deterioration Scale for assessment of primary degenerative dementia. American Journal of Psychiatry, 139, 11361139.Google Scholar
Reitan, R.M. & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tuscon, AZ: Neuropsychology Press.
Royall, D.R., Cordes, J.A., & Polk, M. (1998). CLOX: An executive clock drawing task. Journal of Neurology, Neurosurgery and Psychiatry, 64, 588594.Google Scholar
Sheikh, J. & Yesavage, J. (1986). Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. In T. Brink (Ed.), Clinical gerontology: A guide to assessment and intervention (pp. 165173). New York: Haworth Press.
Spellacy, F. & Spreen, O. (1969). A short form of the Token Test. Cortex, 5, 390397.CrossRefGoogle Scholar
Spreen, O. & Strauss, E. (1991). A compendium of neuropsychological tests. New York: Oxford University Press.
Storandt, M., Grant, E.A., Miller, J.P., & Morris, J.C. (2002). Rates of progression in mild cognitive impairment and early Alzheimer's disease. Neurology, 59, 10341041.Google Scholar
Tierney, M.C., Szalai, J.P., Snow, W.G., Fisher, R.H., Nores, A., Nadon, G., Dunn, E., & St George-Hyslop, P.H. (1996). Prediction of probable Alzheimer's disease in memory-impaired patients: A prospective longitudinal study. Neurology, 46, 661665.CrossRefGoogle Scholar
Tuokko, H., Frerichs, R., Graham, J., Rockwood, K., Kristjansson, B., Fisk, J., Bergman, H., Kozma, A., & McDowell, I. (2003). Five-year follow-up of cognitive impairment with no dementia. Archives of Neurology, 60, 577582.CrossRefGoogle Scholar
Wechsler, D. (1997a). Wechsler Adult Intelligence Scale—Third Edition. New York: Psychological Corporation.
Wechsler, D. (1997b). Wechsler Memory Scale—Third Edition. New York: Psychological Corporation.
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Nordberg, A., Backman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., & Petersen, R.C. (2004). Mild cognitive impairment—beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246.Google Scholar
Yesavage, J. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 3749.Google Scholar