Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:14:18.242Z Has data issue: false hasContentIssue false

APOE Moderates the Association between Lifestyle Activities and Cognitive Performance: Evidence of Genetic Plasticity in Aging

Published online by Cambridge University Press:  01 May 2014

Shannon K. Runge*
Affiliation:
School of Aging Studies, University of South Florida; Tampa, Florida
Brent J. Small
Affiliation:
School of Aging Studies, University of South Florida; Tampa, Florida
G. Peggy McFall
Affiliation:
Department of Psychology, University of Alberta; Edmonton, Alberta, Canada
Roger A. Dixon
Affiliation:
Department of Psychology, University of Alberta; Edmonton, Alberta, Canada
*
Correspondence and reprint requests to: Shannon K. Runge, School of Aging Studies, University of South Florida, 13301 Bruce B. Downs Blvd., MHC 1300, Tampa, FL 33612-3807. E-mail: skrunge@mail.usf.edu

Abstract

The current study examined independent and interactive effects between Apolipoprotein E (APOE) genotype and two types of cognitively-stimulating lifestyle activities (CSLA)—integrated information processing (CSLA-II) and novel information processing (CSLA-NI)—on concurrent and longitudinal changes in cognition. Three-wave data across 6 years of follow-up from the Victoria Longitudinal Study (n=278; ages 55–94) and linear mixed model analyses were used to characterize the effects of APOE genotype and participation in CSLA-II and CSLA-NI in four cognitive domains. Significant CSLA effects on cognition were observed. More frequent participation in challenging activities (i.e., CSLA-NI) was associated with higher baseline scores on word recall, fact recall, vocabulary and verbal fluency. Conversely, higher participation in less cognitively-challenging activities (i.e., CSLA-II) was associated with lower scores on fact recall and verbal fluency. No longitudinal CSLA-cognition effects were found. Two significant genetic effects were observed. First, APOE moderated CSLA-II and CSLA-NI associations with baseline verbal fluency and fact recall scores. Second, APOE non-ɛ4 carriers’ baseline performance were more likely to be moderated by CSLA participation, compared to APOE-ɛ4 carriers. Our findings suggest APOE may be a “plasticity” gene that makes individuals more or less amenable to the influence of protective factors such as CSLA. (JINS, 2014, 20, 1–9)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A., Logie, R., Nimmosmith, I., & Brereton, N. (1985). Components of fluent reading. Journal of Memory and Language, 24(1), 119131. doi:10.1016/0749-596X(85)90019-1CrossRefGoogle Scholar
Battig, W.F., & Montague, W.E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology, 80(3p2), 146. doi:10.1037/0894-4105.19.6.770Google Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14(8), 746754. doi:10.1038/Mp.2009.44Google Scholar
Bonner-Jackson, A., Okonkwo, O., & Tremont, G. (2012). Apolipoprotein E epsilon 2 and functional decline in amnestic mild cognitive impairment and Alzheimer disease. American Journal of Geriatric Psychiatry, 20(7), 584593. doi:10.1097/Jgp.0b013e3182203c32Google Scholar
Brainerd, C.J., Reyna, V.F., Petersen, R.C., Smith, G.E., & Taub, E.S. (2011). Is the Apolipoprotein E genotype a biomarker for mild cognitive impairment? Findings from a nationally representative study. Neuropsychology, 25(6), 679689. doi:10.1037/A0024483CrossRefGoogle ScholarPubMed
Bretsky, P., Guralnik, J.M., Launer, L., Albert, M., & Seeman, T.E. (2003). The role of APOE-epsilon 4 in longitudinal cognitive decline – MacArthur studies of successful aging. Neurology, 60(7), 10771081. doi:10.1212/01.WNL.0000055875.26908.24Google Scholar
Craik, F.I.M., & Salthouse, T.A. (Eds.). (2007). The handbook of aging and cognition. New York, NY: Psychology Press.Google Scholar
Daffner, K.R. (2010). Promoting successful cognitive aging: A comprehensive review. Journal of Alzheimer’s Disease, 19(4), 11011122. doi:10.3233/jad-2010-1306Google Scholar
De Jager, P.L., Shulman, J.M., Chibnik, L.B., Keenan, B.T., Raj, T., Wilson, R.S., … Evans, D.A. (2012). A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiology of Aging 33(5), 1017.e1e15. doi:10.1016/j.neurobiolaging.2011.09.033CrossRefGoogle ScholarPubMed
Deary, I.J., Whiteman, M.C., Pattie, A., Starr, J.M., Hayward, C., Wright, A.F., … Whalley, L.J. (2002). Cognitive change and the APOE ɛ4 allele. Nature, 418(6901), 932932. doi:10.1038/418932aCrossRefGoogle Scholar
Deary, I.J., Johnson, W., & Houlihan, L.M. (2009). Genetic foundations of human intelligence. Human Genetics, 126(1), 215232. doi:10.1007/s00439-009-0655-4Google Scholar
Dik, M.G., Jonker, C., Comijs, H.C., Bouter, L.M., Twisk, J.W.R., van Kamp, G.J., & Deeg, D.J.H. (2001). Memory complaints and APOE-epsilon 4 accelerate cognitive decline in cognitively normal elderly. Neurology, 57(12), 22172222.Google Scholar
Dixon, R.A., & de Frias, C.M. (2004). The Victoria Longitudinal Study: From characterizing cognitive aging to illustrating changes in memory compensation. Aging Neuropsychology and Cognition, 11(2–3), 346376. doi:10.1080/13825580490511161Google Scholar
Dixon, R.A., DeCarlo, C.A., MacDonald, S.W.S., Vergote, D., Jhamandas, J., & Westaway, D. (2013). APOE and COMT polymorphisms are complementary markers of status and stability in normal aging and early mild cognitive impairment – Manuscript submitted for publication.CrossRefGoogle Scholar
Dixon, R.A., Lentz, T.L., Garrett, D.D., MacDonald, S.W.S., Strauss, E., & Hultsch, D.F. (2007). Neurocognitive markers of cognitive impairment: Exploring the roles of speed and inconsistency. Neuropsychology, 21(3), 381399. doi:10.1037/0894-4105.21.3.381Google Scholar
Dixon, R.A., Wahlin, A., Maitland, S.B., Hultsch, D.F., Hertzog, C., & Backman, L. (2004). Episodic memory change in late adulthood: Generalizability across samples and performance indices. Memory & Cognition, 32(5), 768778. doi:10.3758/BF03195867Google Scholar
Ekstrom, R.B., & Harman, H.H. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.Google Scholar
Farlow, M.R., He, Y., Tekin, S., Xu, J., Lane, R., & Charles, H.C. (2004). Impact of APOE in mild cognitive impairment. Neurology, 63(10), 18981901. doi:10.1212/01.WNL.0000144279.21502.B7CrossRefGoogle ScholarPubMed
Farrer, L.A., Cupples, L.A., Haines, J., Hyman, B., Kukull, W., Mayeux, R., … van Duijn, C. (1997). Effects of age, gender and ethnicity on the association between APOE genotype and Alzheimer disease. American Journal of Human Genetics, 61(4), A45A45.Google Scholar
Ferrari, C., Xu, W.L., Wang, H.X., Winblad, B., Sorbi, S., Qiu, C.X., & Fratiglioni, L. (2013). How can elderly apolipoprotein E epsilon 4 carriers remain free from dementia? Neurobiology of Aging, 34(1), 1321. doi:10.1016/j.neurobiolaging.2012.03.003Google Scholar
Finkel, D., & McGue, M. (2007). Genetic and environmental influences on intraindividual variability in reaction time. Experimental Aging Research, 33(1), 1335. doi:10.1080/03610730601006222CrossRefGoogle ScholarPubMed
Fotuhi, M., Mohassel, P., & Yaffe, K. (2009). Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: A complex association. Nature Clinical Practice Neurology, 5(3), 140152. doi:10.1038/Ncpneuro1044Google ScholarPubMed
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurology, 3(6), 343353. doi:10.1016/S1474-4422(04)00767-7CrossRefGoogle ScholarPubMed
Hofer, S.M., & Alwin, D.F. (Eds.). (2008). Handbook of cognitive aging: Interdisciplinary perspectives. Los Angeles, CA: Sage.CrossRefGoogle Scholar
Howard, D.V. (1980). Category norms: Comparison of the Battig and Montague (1969) norms with the responses of adults between the ages of 20 and 80. Journals of Gerontology, 35(2), 225231. doi:10.1093/geronj/35.2.225Google Scholar
Hultsch, D.F., Hertzog, C., Dixon, R.A., & Small, B.J. (1998). Memory change in the aged. New York, NY: Cambridge University Press.Google Scholar
Hultsch, D.F., Hertzog, C., Small, B.J., & Dixon, R.A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14(2), 245263. doi:10.1037/0882-7974.14.2.245CrossRefGoogle ScholarPubMed
Kraft, E. (2012). Cognitive function, physical activity, and aging: Possible biological links and implications for multimodal interventions. Aging, Neuropsychology, and Cognition, 19(1–2), 248263. doi:10.1080/13825585.2011.645101Google Scholar
Kramer, A.F., & Erickson, K.I. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342348. doi:10.1016/j.tics.2007.06.009Google Scholar
Lindenberger, U., Nagel, I.E., Chicherio, C., Li, S.C., Heekeren, H.R., & Backman, L. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2(2), 234244. doi:10.3389/neuro.01.039.2008Google Scholar
Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659676. doi:10.1037/a0020080Google Scholar
McFall, G.P., Wiebe, S.A., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R.A. (2013). IDE (rs6583817) polymorphism and type 2 diabetes differentially modify executive function in older adults. Neurobiology of Aging, 34(9), 22082216. doi:10.1016/j.neurobiolaging.2013.03.010Google Scholar
Mitchell, M.B., Cimino, C.R., Benitez, A., Brown, C.L., Gibbons, L.E., Kennison, R.F., … Piccinin, A.M. (2012). Cognitively stimulating activities: Effects of cognition across four studies with up to 21 years of longitudinal data. Journal of Aging Research, 2012, 112. doi:10.1155/2012/461592Google Scholar
Mungas, D., Beckett, L., Harvey, D., Farias, S.T., Reed, B., Carmichael, O., & DeCarli, C. (2010). Heterogeneity of cognitive trajectories in diverse older persons. Psychology and Aging, 25(3), 606619. doi:10.1037/a0019502Google Scholar
Nelson, T.O., & Narens, L. (1980). Norms of 300 general information questions: Accuracy of recall, latency of recall, and feeling of knowing ratings. Journal of Verbal Learning and Verbal Behavior, 19(3), 338368. doi:10.1016/S002-5371%2880%2990266-2Google Scholar
Niti, M., Yap, K.B., Kua, E.H., Tan, C.H., & Ng, T.P. (2008). Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. International Psychogeriatrics, 20(2), 237251. doi:10.1017/S1041610207006655Google Scholar
Packard, C.J., Westendorp, R.G.J., Stott, D.J., Caslake, M.J., Murray, H.M., Shepherd, J., … Elderly, P.S.P. (2007). Association between apolipoprotein E-4 and cognitive decline in elderly adults. Journal of the American Geriatrics Society, 55(11), 17771785. doi:10.1111/j.1532-5415.2007.01415.xCrossRefGoogle ScholarPubMed
Palmer, J., Macleod, C.M., Hunt, E., & Davidson, J.E. (1985). Information-processing correlates of reading. Journal of Memory and Language, 24(1), 5988. doi:10.1016/0749-596X(85)90016-6Google Scholar
Ram, N., Gerstorf, D., Lindenberger, U., & Smith, J. (2011). Developmental change and intraindividual variability: Relating cognitive aging to cognitive plasticity, cardiovascular lability, and emotional diversity. Psychology and Aging, 26(2), 363371. doi:10.1037/A0021500Google Scholar
Reiman, E.M., Brinton, R.D., Katz, R., Petersen, R.C., Negash, S., Mungas, D., & Aisen, P.S. (2012). Considerations in the design of clinical trials for cognitive aging. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 67(7), 766772. doi:10.1093/gerona/gls124CrossRefGoogle ScholarPubMed
Rockwood, K., & Middleton, L. (2007). Physical activity and the maintenance of cognitive function. Alzheimers & Dementia, 3(2), S38S44. doi:10.1016/j.jalz.2007.01.003Google Scholar
Schipper, H.M. (2011). Apolipoprotein E: Implications for AD neurobiology, epidemiology and risk assessment. Neurobiology of Aging, 32(5), 778790. doi:10.1016/j.neurobiolaging.2009.04.021Google Scholar
Singer, J.D., & Willett, J.B. (2003). Applied longitudinal data analysis: Modeling change and even occurrence. New York, NY: Oxford University Press.Google Scholar
Small, B.J., Dixon, R.A., & McArdle, J.J. (2011). Tracking cognition-health changes from 55 to 95 years of age. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 66, 153161. doi:10.1093/geronb/gbq093Google Scholar
Small, B.J., Dixon, R.A., McArdle, J.J., & Grimm, K.J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study. Neuropsychology, 26(2), 144155. doi:10.1037/A0026579Google Scholar
Small, B.J., Rosnick, C.B., Fratiglioni, L., & Backman, L. (2004). Apolipoprotein E and cognitive performance: A meta-analysis. Psychology and Aging, 19(4), 592600. doi:10.1037/0882-7974.19.4.592Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. doi:10.1016/j.neuropsychologia.2009.03.004Google Scholar
Teter, B. (2004). ApoE-dependent plasticity in Alzheimer's disease. Journal of Molecular Neuroscience, 23(3), 167179. doi:10.1385/jmn:23:3:167Google Scholar
Wang, H.X., Gustafson, D.R., Kivipelto, M., Pedersen, N.L., Skoog, I., Windblad, B., & Fratiglioni, L. (2012). Education halves the risk of dementia due to apolipoprotein epsilon 4 allele: A collaborative study from the Swedish Brain Power Initiative. Neurobiology of Aging, 33(5 doi:10.1016/j.neurobiolaging.2011.10.003Google Scholar
Wisdom, N.M., Callahan, J.L., & Hawkins, K.A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32(1), 6374. doi:10.1016/j.neurobiolaging.2009.02.003Google Scholar
Woodard, J.L., Sugarman, M.A., Nielson, K.A., Smith, J.C., Seidenberg, M., Durgerian, S., … Rao, S.M. (2012). Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Current Alzheimer Research, 9(4), 436446. doi:10.2174/156720512800492477Google Scholar
Zahodne, L.B., Glymour, M.M., Sparks, C., Bontempo, D., Dixon, R.A., MacDonald, S.W.S., & Manly, J.J. (2011). Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. Journal of the International Neuropsychological Society, 17(6), 10391046. doi:10.1017/S1355617711001044Google Scholar