Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T03:19:29.142Z Has data issue: false hasContentIssue false

Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults

Published online by Cambridge University Press:  01 September 2004

OTTO PEDRAZA
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Box 100165, Gainesville, Florida 32610 Cognitive Neuroscience Laboratory, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
DAWN BOWERS
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Box 100165, Gainesville, Florida 32610 Cognitive Neuroscience Laboratory, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
ROBIN GILMORE
Affiliation:
Department of Neurology, University of Florida College of Medicine, Gainesville, Florida 32610

Abstract

Multiple studies have explored the relationship between MRI-based volumetric measurements of the hippocampus and amygdala, the degree of volumetric asymmetry of these structures, and symptom manifestation. However, considerable variability exists with regard to the reported volumetric values of these structures. The present study employed meta-analytic procedures to provide a systematic analysis of the normal population parameters of hippocampal and amygdala volumetric asymmetry as well as the absolute intrahemispheric volumes of these structures in normal adults. A literature review of studies published between 1990 and 2002 resulted in a representative sample of 82 studies (N = 3,564 participants) providing volumetric information of the hippocampus and 51 studies (N = 2,000 participants) providing volumetric information of the amygdala. Results revealed that both the hippocampus and the amygdala are reliably asymmetrical structures in normal adults, with larger right hippocampal (D = 0.21, p < .001) and right amygdala (D = 0.09, p < .01) volumes. Additional analyses indicated that differences in MRI magnet field strength and slice thickness values might differentially contribute to volumetric asymmetry estimates. These results expand on previous volumetric normative studies and may be relevant to investigators studying the clinical correlates of hippocampal and amygdala volumes. (JINS, 2004, 10, 664–678.)

Type
Research Article
Copyright
2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.S., Damasio, H., & Grabowski, T.J. (2002). Normal neuroanatomical variation in the human brain: An MRI-volumetric study. American Journal of Physical Anthropology, 118, 341358.CrossRefGoogle Scholar
Bigler, E.D., Tate, D.F., Miller, M.J., Rice, S.A., Hessel, C.D., Earl, H.D., Tschanz, J.T., Plassman, B., & Welsh-Bohmer, K.A. (2002). Dementia, asymmetry of temporal lobe structures, and Apolipoprotein E genotype: Relationships to cerebral atrophy and neuropsychological impairment. Journal of the International Neuropsychological Society, 8, 925933.Google Scholar
Bobinski, M., de Leon, M.J., Wegiel, J., Desanti, S., Convit, A., Saint Louis, L.A., Rusinek, H., & Wisniewski, H.M. (2000). The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience, 95, 721725.Google Scholar
Bogerts, B., Falkai, B., Schneider, T., & Pfeiffer, U. (1993). The neuropathology of schizophrenia: Past and present. Journal für Hirnforschung, 34, 193205.Google Scholar
Breier, J.I., Leonard, C.M., Bauer, R.M., Roper, S., Lucas, T.H., & Gilmore, R.L. (1996). Quantified volumes of temporal lobe structures in patients with epilepsy. Journal of Neuroimaging, 6, 108114.CrossRefGoogle Scholar
Brierley, B., Shaw, P., & David, A.S. (2002). The human amygdala: A systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Research Reviews, 39, 84105.CrossRefGoogle Scholar
Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., Vauss, Y.C., Snell, J.W., Lange, N., Kaysen, D., Krain, A.L., Ritchie, G.F., Rajapakse, J.C., & Rapoport, J.L. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53, 607616.CrossRefGoogle Scholar
Cooper, H. & Hedges, L.V. (1994). Potentials and limitations of research synthesis. In H. Cooper & L.V. Hedges (Eds.), Handbook of research synthesis (pp. 521529). New York: Russell Sage Foundation.
Dickerson, B.C., Goncharova, I., Sullivan, M.P., Forchetti, C., Wilson, R.S., Bennett, D.A., Beckett, L.A., & deToledo-Morrell, L. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiology of Aging, 22, 747754.CrossRefGoogle Scholar
Dunlap, W.P., Cortina, J.M., Vaslow, J.B., & Burke, M.J. (1996). Meta-analysis of experiments with matched groups or repeated measures designs. Psychological Methods, 1, 170177.CrossRefGoogle Scholar
Durlak, J.A. & Lipsey, M.W. (1991). A practitioner's guide to meta-analysis. American Journal of Community Psychology, 19, 291332.Google Scholar
Edland, S.D., Xu, Y., Plevak, M., O'Brien, P., Tangalos, E.G., Petersen, R.C., & Jack, C.R., Jr. (2002). Total intracranial volume: Normative values and lack of association with Alzheimer's disease. Neurology, 59, 272274.CrossRefGoogle Scholar
Galton, C.J., Patterson, K., Graham, K., Lambon-Ralph, M.A., Williams, G., Antoun, N., Sahakian, B.J., & Hodges, J.R. (2001). Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology, 57, 216225.CrossRefGoogle Scholar
Ge, Y., Grossman, R.I., Babb, J.S., Rabin, M.L., Mannon, L.J., & Kolson, D.L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part II: Quantitative magnetization transfer ratio histogram analysis. American Journal of Neuroradiology, 23, 13341341.Google Scholar
Geroldi, C., Laakso, M.P., DeCarli, C., Beltramello, A., Bianchetti, A., Soininen, H., Trabucchi, M., & Frisoni, G.B. (2000). Apolipoprotein E genotype and hippocampal asymmetry in Alzheimer's disease: A volumetric MRI study. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 9396.CrossRefGoogle Scholar
Giedd, J.N., Snell, J.W., Lange, N., Rajapakse, J.C., Casey, B.J., Kozuch, P.L., Vaituzis, A.C., Vauss, Y.C., Hamburger, S.D., Kaysen, D., & Rapoport, J.L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551560.CrossRefGoogle Scholar
Gilmore, R.L., Childress, M.D., Leonard, C., Quisling, R., Roper, S., Eisenschenk, S., & Mahoney, M. (1995). Hippocampal volumetrics differentiate patients with temporal lobe epilepsy and extratemporal lobe epilepsy. Archives of Neurology, 52, 819824.CrossRefGoogle Scholar
Gloor, P. (1997). The temporal lobe and limbic system. New York: Oxford University Press.
Harding, A.J., Stimson, E., Henderson, J.M., & Halliday, G.M. (2002). Clinical correlates of selective pathology in the amygdala of patients with Parkinson's disease. Brain, 125(Pt. 11), 24312445.CrossRefGoogle Scholar
Hedges, L.V. & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Hunter, J.E. & Schmidt, F.L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage Publications.
Jack, C.R., Jr., Petersen, R.C., Xu, Y.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.CrossRefGoogle Scholar
Jack, C.R., Jr., Petersen, R.C., Xu, Y.C., Waring, S.C., O'Brien, P.C., Tangalos, E.G., Smith, G.E., Ivnik, R.J., & Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49, 786794.CrossRefGoogle Scholar
Jack, C.R., Jr., Theodore, W.H., Cook, M., & McCarthy, G. (1995). MRI-based hippocampal volumetrics: Data acquisition, normal ranges, and optimal protocol. Magnetic Resonance Imaging, 13, 10571064.CrossRefGoogle Scholar
Krasuski, J.S., Alexander, G.E., Horwitz, B., Daly, E.M., Murphy, D.G.M., Rapoport, S.I., & Schapiro, M.B. (1998). Volumes of medial temporal lobe structure in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biological Psychiatry, 43, 6068.CrossRefGoogle Scholar
Lawrie, S.M. & Abukmeil, S.S. (1998). Brain abnormality in schizophrenia: A systematic and quantitative review of volumetric magnetic resonance imaging studies. British Journal of Psychiatry, 172, 11020.CrossRefGoogle Scholar
Luft, A.R., Skalej, M., Welte, D., Kolb, R., & Klose, U. (1998). Reliability and exactness of MRI-based volumetry: A phantom study. Journal of Magnetic Resonance Imaging, 6, 700704.Google Scholar
Murphy, G.M., Jr., Inger, P., Mark, K., Lin, J., Morrice, W., Gee, C., Gan, S., & Korp, B. (1987). Volumetric asymmetry in the human amygdaloid complex. Journal für Hirnforschung, 28, 281289.Google Scholar
Nelson, M.D., Saykin, A.J., Flashman, L.A., & Riordan, H.J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging. Archives of General Psychiatry, 55, 433440.CrossRefGoogle Scholar
O'Brien, P.C. & Dyck, P.J. (1995). Procedures for setting normal values. Neurology, 45, 1723.CrossRefGoogle Scholar
Orwin, R.G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8, 157159.CrossRefGoogle Scholar
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 19851992.CrossRefGoogle Scholar
Radhakrishnan, K., So, E.L., Silbert, P.L., Jack, C.R., Jr., Cascino, G.D., Sharbrough, F.W., & O'Brien, P.C. (1998). Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: A multivariate study. Neurology, 51, 465471.CrossRefGoogle Scholar
Rosenthal, R. (1991). Meta-analysis: A review. Psychosomatic Medicine, 53, 247271.CrossRefGoogle Scholar
Rosenthal, R. & DiMatteo, M.R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 5982.CrossRefGoogle Scholar
Salanova, V., Markand, O., & Worth, R. (1999). Longitudinal follow-up in 145 patients with medically refractory temporal lobe epilepsy treated surgically between 1984 and 1995. Epilepsia, 40, 14171423.CrossRefGoogle Scholar
Shadish, W.R. & Haddock, C.K. (1994). Combining estimates of effect size. In H. Cooper & L.V. Hedges (Eds.), Handbook of research synthesis (pp. 261281). New York: Russell Sage Foundation.
Wang, L., Joshi, S.C., Miller, M.I., & Csernansky, J.G. (2001). Statistical analysis of hippocampal asymmetry in schizophrenia. Neuroimage, 14, 531545.CrossRefGoogle Scholar
Watson, C., Jack, C.R., Jr., & Cendes, F. (1997b). Volumetric magnetic resonance imaging: Clinical applications and contributions to the understanding of temporal lobe epilepsy. Archives of Neurology, 54, 15211531.Google Scholar
Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W.R., David, A.S., Murray, R.M., & Bullmore, E.T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 1625.CrossRefGoogle Scholar