Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T07:04:55.994Z Has data issue: false hasContentIssue false

Bridging the Gap Between Neurocognitive Processing Theory and Performance Validity Assessment among the Cognitively Impaired: A Review and Methodological Approach

Published online by Cambridge University Press:  10 November 2014

Angela Leighton
Affiliation:
Centre for Forensic Science, University of Western Australia, Crawley, Western Australia School of Psychology, University of Western Australia, Crawley, Western Australia
Michael Weinborn*
Affiliation:
School of Psychology, University of Western Australia, Crawley, Western Australia
Murray Maybery
Affiliation:
School of Psychology, University of Western Australia, Crawley, Western Australia
*
Correspondence and reprint requests to: Michael Weinborn, School of Psychology, University of Western Australia, Crawley, WA 6009, Australia. E-mail: michael.weinborn@uwa.edu.au

Abstract

Bigler (2012) and Larrabee (2012) recently addressed the state of the science surrounding performance validity tests (PVTs) in a dialogue highlighting evidence for the valid and increased use of PVTs, but also for unresolved problems. Specifically, Bigler criticized the lack of guidance from neurocognitive processing theory in the PVT literature. For example, individual PVTs have applied the simultaneous forced-choice methodology using a variety of test characteristics (e.g., word vs. picture stimuli) with known neurocognitive processing implications (e.g., the “picture superiority effect”). However, the influence of such variations on classification accuracy has been inadequately evaluated, particularly among cognitively impaired individuals. The current review places the PVT literature in the context of neurocognitive processing theory, and identifies potential methodological factors to account for the significant variability we identified in classification accuracy across current PVTs. We subsequently evaluated the utility of a well-known cognitive manipulation to provide a Clinical Analogue Methodology (CAM), that is, to alter the PVT performance of healthy individuals to be similar to that of a cognitively impaired group. Initial support was found, suggesting the CAM may be useful alongside other approaches (analogue malingering methodology) for the systematic evaluation of PVTs, particularly the influence of specific neurocognitive processing components on performance. (JINS, 2014, 20, 873–886)

Type
Critical Review
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. D., Bigler, E. D., Larsen, J., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2007). Functional neuroimaging evidence for high cognitive effort on the Word Memory Test in the absence of external incentives. Brain Injury, 21(13-14), 14251428.CrossRefGoogle ScholarPubMed
Allen, L. M., Conder, R. L., Green, P., & Cox, D. R. (1997). CARB'97: Computerized Assessment of Response Bias. Manual. Cognisyst, Durham (NC).Google Scholar
Ally, B. A., McKeever, J. D., Waring, J. D., & Budson, A. E. (2009). Preserved frontal memorial processing for pictures in patients with mild cognitive impairment. Neuropsychologia, 47(10), 20442055. doi: 10.1016/j.neuropsychologia.2009.03.015 CrossRefGoogle ScholarPubMed
Anderson, N. D., Davidson, P. S. R., Mason, W. P., Gao, F., Binns, M. A., & Winocur, G. (2011). Right frontal lobe mediation of recollection- and familiarity-based verbal recognition memory: Evidence from patients with tumor resections. Journal of Cognitive Neuroscience, 23(12), 38043816. doi: 10.1162/jocn_a_00050 CrossRefGoogle ScholarPubMed
Anderson, S. W., Damasio, H., & Tranel, D. (1990). Neuropsychological impairments associated with lesions caused by tumor or stroke. Archives of Neurology, 47(4), 397405. doi: 10.1001/archneur.1990.00530040039017 CrossRefGoogle ScholarPubMed
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. [Article]. Nature Reviews. Neuroscience, 9(4), 278291. doi: 10.1038/nrn2334 CrossRefGoogle ScholarPubMed
Armistead-Jehle, P., & Gervais, R. O. (2011). Sensitivity of the test of memory malingering and the nonverbal medical symptom validity test: A replication study. Applied Neuropsychology, 18(4), 284290. doi: 10.1080/09084282.2011.595455 CrossRefGoogle Scholar
Armistead-Jehle, P., & Hansen, C. L. (2011). Comparison of the Repeatable Battery for the Assessment of Neuropsychological Status Effort Index and Stand-Alone Symptom Validity Tests in a military sample. Archives of Clinical Neuropsychology, 26(7), 592601. doi: 10.1093/arclin/acr049 CrossRefGoogle Scholar
Axelrod, B. N., & Schutte, C. (2011). Concurrent validity of three forced-choice measures of symptom validity. Applied Neuropsychology, 18(1), 2733. doi: 10.1080/09084282.2010.523369 CrossRefGoogle ScholarPubMed
Baddeley, A., Eysenck, M., & Anderson, M. (2009). Memory. East Sussex: Psychology Press.Google ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of learning and motivation, 8, 4789.CrossRefGoogle Scholar
Baldo, J. V., Delis, D., Kramer, J., & Shimamura, A. P. (2002). Memory performance on the California Verbal Learning Test–II: Findings from patients with focal frontal lesions. Journal of the International Neuropsychological Society, 8(04), 539546.CrossRefGoogle ScholarPubMed
Barhon, L., Batchelor, J., Meares, S., Chekaluk, E., & Shores, A. (in press). A Comparison of the Degree of Effort Involved in the TOMM and the ACS Word Choice Test Using a Dual-Task Paradigm. Applied Neuropsychology. Google Scholar
Barhon, L., Batchelor, J., Meares, S., Chekaluk, E., & Shores, A. (2014). A comparison of the degree of effort involved in the TOMM and the ACS Word Choice Test using a dual-task paradigm. Applied Neuropsychology, 12, 110.Google Scholar
Batt, K., Shores, E. A., & Chekaluk, E. (2008). The effect of distraction on the Word Memory Test and Test of Memory Malingerin in patients with a severe brain injury. Journal of the International Neurolopsychological Society 14, 10741080. doi: 10.1017/S135561770808137X CrossRefGoogle ScholarPubMed
Bauer, L., O’Bryant, S. E., Lynch, J. K., McCaffrey, R. J., & Fisher, J. M. (2007). Examining the Test of Memory Malingering Trial 1 and Word Memory Test Immediate Recognition as screening tools for insufficient effort. Assessment, 14(3), 215222. doi: 10.1177/1073191106297617 CrossRefGoogle ScholarPubMed
Bayley, P., Wixted, J., Hopkins, R., & Squire, L. (2008). Yes/no recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience, 20(3), 505512.CrossRefGoogle ScholarPubMed
Bernard, L. C. (1991). The detection of faked deficits on the Rey Auditory Verbal Learning Test: The effect of serial position. Archives of Clinical Neuropsychology, 6(1), 8188.CrossRefGoogle ScholarPubMed
Bianchini, K. J., Mathias, C. W., & Greve, K. W. (2001). Symptom validity testing: A critical review. Clinical Neuropsychologist, 15(1), 1945.CrossRefGoogle ScholarPubMed
Bigler, E. D. (2012). Symptom validity testing, effort, and neuropsychological assessment. Journal of the International Neuropsychological Society, 18(4), 632.CrossRefGoogle ScholarPubMed
Binder, L. M. (1993). Assessment of malingering after mild head trauma with the Portland Digit Recognition Test. Journal of Clinical and Experimental Neuropsychology, 3, 175181.Google Scholar
Binder, L. M., & Kelly, M. P. (1996). Portland Digit Recognition Test performance by brain dysfunction patients without financial incentives. Assessment, 3(4), 403409.CrossRefGoogle Scholar
Bolan, B., Foster, J. K., Schmand, B., & Bolan, S. (2002). A comparison of three tests to detect feigned amnesia: The effects offeedback and the measurement of response latency. [Article]. Journal of Clinical & Experimental Neuropsychology, 24(2), 154.CrossRefGoogle Scholar
Boone, K. B. (2007). Assessment of feigned cognitive impairment: A neuropsychological perspective. New York: Guilford Press.Google Scholar
Bush, S. S., Ruff, R. M., Tröster, A. I., Barth, J. T., Koffler, S. P., Pliskin, N. H., … Silver, C. H. (2005). Symptom validity assessment: Practice issues and medical necessity: NAN Policy & Planning Committee. Archives of Clinical Neuropsychology, 20(4), 419426.CrossRefGoogle ScholarPubMed
Carlesimo, G., Sabbadini, M., Fadda, L., & Caltagirone, C. (1997). Word-list forgetting in young and elderly subjects: Evidence for age-related decline in transferring information from transitory to permanent memory condition. Cortex, 33(1), 155.CrossRefGoogle Scholar
Castel, A. D., & Craik, F. I. M. (2003). The effects of aging and divided attention on memory for item and associative information. Psychology and Aging, 18(4), 873885.CrossRefGoogle ScholarPubMed
Chafetz, M. D., Prentkowski, E., & Rao, A. (2011). To work or not to work: Motivation (not low IQ) determines symptom validity test findings. Archives of Clinical Neuropsychology, 26(4), 306313.CrossRefGoogle ScholarPubMed
Chouinard, M., & Rouleau, I. (1997). The 48-Pictures test: A two-alternative forced-choice recognition test for the detection of malingering. Journal of the International Neurolopsychological Society, 3, 545552.CrossRefGoogle Scholar
Cohen, L., & Dehaene, S. (1995). Number processing in pure alexia: The effect of hemispheric asymmetries and task demands. Neurocase, 1(2), 121137. doi: 10.1080/13554799508402356 CrossRefGoogle Scholar
Colby, F. (2001). Using the binomial distribution to assess effort: Forced-choice testing in neuropsychological settings. NeuroRehabilitation, 16(4), 253265.CrossRefGoogle ScholarPubMed
Constantinou, M., Bauer, L., Ashendorf, L., Fisher, J. M., & McCaffrey, R. J. (2005). Is poor performance om recognition memory effort measures indicative of generalized poor performance on neuropsychological tests? Archives of Clinical Neuropsychology, 20, 191198.CrossRefGoogle Scholar
Craik, F. I. (1982). Selective changes in encoding as a function of reduced processing capacity. Cognitive Research in Psychology, 152161.Google Scholar
Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268.CrossRefGoogle Scholar
Dandachi-FitzGerald, B., Ponds, R. H. M., Peters, M. J. V., & Merkelbach, H. (2011). Cognitive underperformance and symptom over-reporting in a mixed psychiatric sample. The Clinical Neuropsychologist, 25(5), 812828.CrossRefGoogle Scholar
Davis, J. J., Wall, J. R., & Whitney, K. A. (2012). Derivation and clinical validation of consistency indices on the test of memory malingering. Archives of Clinical Neuropsychology, 27, 706715. doi: 10.1093/arclin/acs078 CrossRefGoogle ScholarPubMed
de Zubicaray, G. I., Wilson, S. J., McMahon, K. L., & Muthiah, S. (2001). The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 14(4), 218227. doi: 10.1002/hbm.1054 CrossRefGoogle ScholarPubMed
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 142. doi: 10.1016/0010-0277(92)90049-n CrossRefGoogle ScholarPubMed
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371396.CrossRefGoogle Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487506. doi: 10.1080/02643290244000239 CrossRefGoogle ScholarPubMed
Drane, D. L., Williamson, D. J., Stroup, E. S., Holmes, M. D., Jung, M., Koerner, E., … Miller, J. W. (2006). Cognitive impairment is not equal in patients with epileptic and psychogenic nonepileptic seizures. Epilepsia, 47(11), 18791886. doi: 10.1111/j.1528-1167.2006.00611.x CrossRefGoogle Scholar
Flaro, L., Green, P., & Robertson, E. (2007). Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: The power of external incentives. Brain Injury, 21(4), 373383.CrossRefGoogle ScholarPubMed
Gervais, R. O., Rohling, M. L., Green, P., & Ford, W. (2004). A comparison of WMT, CARB, and TOMM failure rates in non-head injury disability claimants. Archives of Clinical Neuropsychology, 19(4), 475487. doi: 10.1016/j.acn.2003.05.001 CrossRefGoogle ScholarPubMed
Gevers, W., Reynvoet, B., & Fais, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87B95. doi: 10.1016/s0010-0277(02)00234-2 CrossRefGoogle ScholarPubMed
Glanzer, M., & Bowles, N. (1976). Analysis of the word frequency effect in recognition memory. Journal of Experimental Psychology: Human Learning and Memory, 2(1), 2131.Google Scholar
Gold, J. A., Zaremski, M. J., Lev, E. R., & Shefrin, D. H. (1993). Daubert v Merrell Dow. JAMA, 270(24), 29642967.CrossRefGoogle ScholarPubMed
Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2009). Word memory test performance in amnesic patients with hippocampal damage. Neuropsychology, 23(4), 529.CrossRefGoogle ScholarPubMed
Gorissen, M., Sanz, J. C., & Schmand, B. (2005). Effort and cognition in schizophrenia patients. Schizophrenia Research, 78(2), 199208.CrossRefGoogle ScholarPubMed
Green, P. (2003). Green’s Word Memory Test for Windows: User’s manual. Edmonton: Green’s Publishing.Google Scholar
Green, P. (2004). Green’s Medical Symptom Validity Test (MSVT) for Microsoft Windows: User’s manual. Edmonton: Green’s Publishing.Google Scholar
Green, P. (2008). Green’s NonVerbal-Medical Symptom Validity Test (NV-MSVT) for Microsoft Windows: User’s manual. Edmonton: Green’s Publishing.Google Scholar
Green, P. (2011). Comparison between the Test of Memory Malingering (TOMM) and the Nonverbal Medical Symptom Validity Test (NV-MSVT) in adults with disability claims. [Article]. Applied Neuropsychology, 18(1), 1826. doi: 10.1080/09084282.2010.523365 CrossRefGoogle ScholarPubMed
Green, P., Allen, L., & Astner, K. (1996). The Word Memory Test: A user’s guide to the oral and computer-administered forms, US Version 1.1. Durham, NC: CogniSyst.Google Scholar
Green, P., Flaro, L., & Courtney, J. (2009). Examining false positives on the Word Memory Test in adults with mild traumatic brain injury. [Article]. Brain Injury, 23(9), 741750. doi: 10.1080/02699050903133962 CrossRefGoogle ScholarPubMed
Green, P., Iverson, G. L., & Allen, L. (1999). Detecting malingering in head injury litigation with the Word Memory Test. [Article]. Brain Injury, 13(10), 813819. doi: 10.1080/026990599121205 CrossRefGoogle ScholarPubMed
Green, P., & Iverson, G. L. (2001). Validation of the computerized assessment of response bias in litigating patients with head injuries. The Clinical Neuropsychologist, 15(4), 492497.CrossRefGoogle ScholarPubMed
Green, P., Lees-Haley, P. R., & Allen, L. M. (2002). The Word Memory Test and the validity of neuropsychological test scores. Journal of Forensic Neuropsychology, 2(3), 97124.CrossRefGoogle Scholar
Green, P., Montijo, J., & Brockhaus, R. (2011). High Specificity of the Word Memory Test and Medical Symptom Validity Test in groups with severe verbal memory impairment. [Article]. Applied Neuropsychology, 18(2), 8694. doi: 10.1080/09084282.2010.523389 CrossRefGoogle ScholarPubMed
Gregg, V. (1976). Word frequency, recognition and recall (pp. 275). Oxford: John Wiley & Sons.Google Scholar
Greiffenstein, M. F., Greve, K. W., Bianchini, K. J., & Baker, W. J. (2008). Test of memory malingering and word memory test: A new comparison of failure concordance rates. Archives of Clinical Neuropsychology, 23(7–8), 801807. doi: 10.1016/j.acn.2008.07.005.CrossRefGoogle Scholar
Greve, K. W., & Bianchini, K. J. (2006). Classification accuracy of the Portland Digit Recognition Test in traumatic brain injury: Results of a known-groups analysis. The Clinical Neuropsychologist, 20(4), 816830.CrossRefGoogle ScholarPubMed
Greve, K. W., Ord, J., Curtis, K. L., Bianchini, K. J., & Brennan, A. (2008). Detecting malingering in traumatic brain injury and chronic pain: A comparison of three forced-choice symptom validity tests. The Clinical Neuropsychologist, 22(5), 896918.CrossRefGoogle ScholarPubMed
Greve, K. W., Bianchini, K. J., Black, F. W., Heinly, M. T., Love, J. M., Swift, D. A., & Ciota, M. (2006). Classification accuracy of the Test of Memory Malingering in persons reporting exposure to environmental and industrial toxins: Results of a known-groups analysis. Archives of Clinical Neuropsychology, 21(5), 439448. doi: 10.1016/j.acn.2006.06.004 CrossRefGoogle ScholarPubMed
Greve, K. W., Bianchini, K. J., & Doane, B. M. (2006). Classification accuracy of the test of memory malingering in traumatic brain injury: Results of a known-groups analysis. Journal of Clinical and Experimental Neuropsychology, 28(7), 11761190.CrossRefGoogle ScholarPubMed
Grote, C. L., Kooker, E. K., Garron, D. C., Nyenhuis, D. L., Smith, C. A., & Mattingly, M. L. (2000). Performance of compensation seeking and non-compensation seekingsamples on the Victoria Symptom Validity Test: Cross-validation and extension of a standardization study. [Article]. Journal of Clinical & Experimental Neuropsychology, 22(6), 709.CrossRefGoogle ScholarPubMed
Gunner, J. H., Miele, A. S., Lynch, J. K., & McCaffrey, R. J. (2012). The Albany Consistency Index for the test of memory malingering. Archives of Clinical Neuropsychology, 27(1), 19. doi: 10.1093/arclin/acr089 CrossRefGoogle ScholarPubMed
Henry, M., Merten, T., Wolf, S. A., & Harth, S. (2010). Nonverbal Medical Symptom Validity Test performance of elderly healthy adults and clinical neurology patients. Journal of Clinical and Experimental Neuropsychology, 32(1), 1927.CrossRefGoogle ScholarPubMed
Hintzman, D. (2001). Similarity, global matching, and judgments of frequency. Memory & Cognition, 29(4), 547556. doi: 10.3758/bf03200456 CrossRefGoogle ScholarPubMed
Hiscock, M., & Hiscock, C. K. (1989). Refining the forced-choice method for the detection of malingering. Journal of Clinical and Experimental Neuropsychology, 11, 967974.CrossRefGoogle ScholarPubMed
Hoshino, Y. (1991). A bias in favor of the positive response to high-frequency words in recognition memory. Memory & Cognition, 19(6), 607616. doi: 10.3758/bf03197156 CrossRefGoogle ScholarPubMed
Howe, L. L. S., Anderson, A. M., Kaufman, D. A. S., Sachs, B. C., & Loring, D. W. (2007). Characterization of the Medical Symptom Validity Test in evaluation of clinically referred memory disorders clinic patients. Archives of Clinical Neuropsychology, 22(6), 753761. doi: 10.1016/j.acn.2007.06.003 CrossRefGoogle ScholarPubMed
Howe, L. L., & Loring, D. W. (2009). Classification accuracy and predictive ability of the Medical Symptom Validity Test’s dementia profile and general memory impairment profile. The Clinical Neuropsychologist, 23(2), 329342.CrossRefGoogle ScholarPubMed
Hunt, R. R. (2006). Distinctiveness and memory. New York: Oxford University Press.CrossRefGoogle Scholar
Iverson, G. L., & Franzen, M. D. (1998). Detecting malingered memory deficits with the Recognition Memory Test. [Article]. Brain Injury, 12(4), 275282. doi: 10.1080/026990598122575 CrossRefGoogle ScholarPubMed
Ju, D., & Varney, N. R. (2000). Can head injury patients simulate malingering? [Article]. Applied Neuropsychology, 7(4), 201207.CrossRefGoogle ScholarPubMed
Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319(5865), 966968. doi: 10.1126/science.1152408 CrossRefGoogle ScholarPubMed
Kausler, D. H., & Yadrick, R. M. (1977). Item identifications following varying study trials on a multiple-item recognition learning task. Journal of Experimental Psychology: Human Learning and Memory, 3(2), 203.Google Scholar
Keary, T. A., Frazier, T. W., Belzile, C. J., Chapin, J. S., Naugle, R. I., Najm, I. M., & Busch, R. M. (2013). Working memory and intelligence are associated with Victoria Symptom Validity Test hard item performance in patients with intractable epilepsy. Journal of the International Neuropsychological Society, 19(03), 314323.CrossRefGoogle ScholarPubMed
Kim, M. S., Boone, K. B., Victor, T., Marion, S. D., Amano, S., Cottingham, M. E., … Zeller, M. A. (2010). The Warrington Recognition Memory Test for words as a measure of response bias: Total score and response time cutoffs developed on “Real World” credible and noncredible subjects. Archives of Clinical Neuropsychology, 25(1), 6070. doi: 10.1093/arclin/acp088 CrossRefGoogle ScholarPubMed
Kintsch, W. (1970). Learning, memory, and conceptual processes. New York: John Wiley and Sons.Google Scholar
Kirschner, P. A., Ayres, P., & Chandler, P. (2011). Contemporary cognitive load theory research: The good, the bad and the ugly. Computers in Human Behavior, 27(1), 99105. doi: 10.1016/j.chb.2010.06.025 CrossRefGoogle Scholar
Larrabee, G. J. (2012). Performance validity and symptom validity in neuropsychological assessment. Journal of the International Neuropsychological Society, 18(04), 625630.CrossRefGoogle ScholarPubMed
Larsen, J. D., Allen, M. D., Bigler, E. D., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2010). Different patterns of cerebral activation in genuine and malingered cognitive effort during performance on the Word Memory Test. Brain Injury, 24(2), 8999. doi: doi:10.3109/02699050903508218 CrossRefGoogle ScholarPubMed
Loring, D. W., Larrabee, G. J., Lee, G. P., & Meador, K. J. (2007). Victoria Symptom Validity Test performance in a heterogenous clinical sample. The Clinical Neuropsychologist, 21, 522531.CrossRefGoogle Scholar
Loring, D. W., Lee, G. P., & Meador, K. J. (2005). Victoria Symptom Validity Test performance in non-litigating epilepsy surgery candidates. Journal of Clinical & Experimental Neuropsychology, 27, 610617.CrossRefGoogle ScholarPubMed
Loring, D. W., Marino, S. E., Drane, D. P., Finney, G. R., & Meador, K. J. (2011). Lorazepam effects on Word Memory Test performance: A randomized, double-blind, placebo-controlled, crossover trial. The Clinical Neuropsychologist, 25(5), 799811.CrossRefGoogle ScholarPubMed
Lu, P. H., Boone, K. B., Cozolino, L., & Mitchell, C. (2003). Effectiveness of the Rey-Osterrieth Complex Figure Test and the Meyers and Meyers Recognition Trial in the detection of suspect effort. The Clinical Neuropsychologist, 17(3), 426440. doi: 10.1076/clin.17.3.426.18083 CrossRefGoogle ScholarPubMed
Martins, M., & Martins, I. P. (2010). Memory malingering: Evaluating WMT criteria. [Article]. Applied Neuropsychology, 17(3), 177182. doi: 10.1080/09084281003715709 CrossRefGoogle ScholarPubMed
Maybery, M. T., Parmentier, F. B., & Jones, D. M. (2002). Grouping of list items reflected in the timing of recall: Implications for models of serial verbal memory. Journal of Memory and Language, 47(3), 360385.CrossRefGoogle Scholar
McBride, D. M., & Anne Dosher, B. (2002). A comparison of conscious and automatic memory processes for picture and word stimuli: A process dissociation analysis. Consciousness and Cognition, 11(3), 423460. doi: 10.1016/s1053-8100(02)00007-7 CrossRefGoogle ScholarPubMed
McCormick, C. L., Yoash-Gantz, R. E., McDonald, S. D., Campbell, T. C., & Tupler, L. A. (2013). Performance on the green word memory test following Operation Enduring Freedom/Operation Iraqi Freedom-era military service: Test failure is related to evaluation context. Archives of clinical neuropsychology, act050.CrossRefGoogle Scholar
Merten, T., Bossink, L., & Schmand, B. (2007). On the limits of effort testing: Symptom validity tests and severity of neurocognitive symptoms in nonlitigant patients. Journal of Clinical & Experimental Neuropsychology, 29(3), 308318.CrossRefGoogle ScholarPubMed
Merten, T., Green, P., Henry, M., Blaskewitz, N., & Brockhaus, R. (2005). Analog validation of German-language symptom validity tests and the influence of coaching. Archives of Clinical Neuropsychology, 20, 719726.CrossRefGoogle ScholarPubMed
Nelson, D. L. (1979). Remembering pictures and words: Appearance, significance, and name. In L. S. Cermak & F. I. M. Craik (Eds.), Levels of processing in human memory (pp. 4576). New York: Psychology Press.Google Scholar
Nelson, N. W., Hoelzle, J. B., McGuire, K. A., Ferier-Auerbach, A. G., Charlesworth, M. J., & Sponheim, S. R. (2010). Evaluation context impacts neuropsychological performance of OEF/OIF veterans with reported combat-related concussion. Archives of Clinical Neuropsychology, 25, 713723.CrossRefGoogle ScholarPubMed
Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 6371. doi: 10.1207/s15326985ep3801_8 CrossRefGoogle Scholar
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255.CrossRefGoogle Scholar
Pankratz, L. (1979). Symptom validity testing and symptom retraining: Procedures for the assessment and treatment of functional sensory deficits. Journal of Consulting and Clinical Psychology, 47(2), 409.CrossRefGoogle ScholarPubMed
Pastötter, B., Schicker, S., Niedernhuber, J., & Bäuml, K.-H. T. (2011). Retrieval during learning facilitates subsequent memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(2), 287.Google ScholarPubMed
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian IndigeneGroup. [Article]. Science, 306(5695), 499503.CrossRefGoogle Scholar
Rogers, R. (2008). Clinical assessment of malingering and deception (3rd ed.), New York: Guilford Press.Google Scholar
Root, J. C., Robbins, R. N., Chang, L., & Van Gorp, W. G. (2006). Detection of inadequate effort on the California Verbal Learning Test-: Forced choice recognition and critical item analysis. Journal of the International Neuropsychological Society, 12(05), 688696.CrossRefGoogle ScholarPubMed
Rudman, N., Oyebode, J. R., Jones, C. A., & Bentham, P. (2011). An investigation into the validity of effort tests in a working age dementia population. Aging & Mental Health, 15(1), 4757.CrossRefGoogle Scholar
Rutishauser, U., Mamelak, A. N., & Schuman, E. M. (2006). Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex. Neuron, 49(6), 805813. doi: 10.1016/j.neuron.2006.02.015 CrossRefGoogle ScholarPubMed
Schagen, S., Schmand, B., Sterke, S. D., & Lindeboom, J. (1997). Amsterdam Short-Term Memory Test: A new procedure for the detection of feigned memory deficits. Journal of Clinical and Experimental Neuropsychology, 19(1), 4351.CrossRefGoogle Scholar
Schmitter-Edgecombe, M., & Nissley, H. M. (2000). Effects of divided attention on automatic and controlled components of memory after severe closed-head injury. Neuropsychology, 14(4), 559.CrossRefGoogle ScholarPubMed
Schroeder, R. W., & Marshall, P. S. (2010). Validation of the Sentence Repetition Test as a measure of suspect effort. The Clinical Neuropsychologist, 24(2), 326343.CrossRefGoogle ScholarPubMed
Sevostianov, A., Horwitz, B., Nechaev, V., Williams, R., Fromm, S., & Braun, A. R. (2002). fMRI study comparing names versus pictures of objects. Human Brain Mapping, 16(3), 168175. doi: 10.1002/hbm.10037 CrossRefGoogle ScholarPubMed
Sharland, M. J., & Gfeller, J. D. (2007). A survey of neuropsychologists’ beliefs and practices with repect to the assessment of effort. Archives of Clinical Neuropsychology, 22, 213223.CrossRefGoogle Scholar
Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6(1), 156163.CrossRefGoogle Scholar
Shepard, R. N., & Podgorny, P. (1978). Cognitive processes that resemble perceptual processes. In W. K. Estes (Ed.), Handbook of learning & cognitive processes: V. Human information (pp. 189237). Oxford: Lawrence Erlbaum.Google Scholar
Shores, E. A., & Walker, A. (2007). Experiemental analysis of the immediate recogntion component of the Word Memory Test reveals unsatisfactory diagnostic accuracy. Sydney, NSW: Unp, Macquarie University.Google Scholar
Singhal, A., Green, P., Ashaye, K., Shankar, K., & Gill, D. (2009). High specificity of the Medical Symptom Validity Test in patients with very severe memory impairment. Archives of Clinical Neuropsychology, 24(8), 721728.CrossRefGoogle ScholarPubMed
Slick, D. J., Hopp, G., Strauss, E., & Spellacy, F. J. (1996). Victoria Symptom Validity Test: Efficiency for detecting feigned memory impairment and relationship to neuropsychological tests and MMPI-2 validity scales. Journal of Clinical and Experimental Neuropsychology, 18(6), 911922.CrossRefGoogle ScholarPubMed
Sollman, M. J., & Berry, D. T. R. (2011). Detection of inadequate effort on neuropsychological testing: A meta-analytic update and extension. Archives of Clinical Neuropsychology, 26(8), 774789. doi: 10.1093/arclin/acr066 CrossRefGoogle ScholarPubMed
Standing, L. (1973). Learning 10000 pictures. The Quarterly Journal of Experimental Psychology, 25(2), 207222.CrossRefGoogle Scholar
Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 7374.CrossRefGoogle Scholar
Stevens, A., Friedel, E., Mehren, G., & Merten, T. (2008). Malingering and uncooperativeness in psychiatric and psychological assessment: Prevalence and effects in a German sample of claimants. Psychiatry Research, 157(1–3), 191200. doi: 10.1016/j.psychres.2007.01.003 CrossRefGoogle Scholar
Strauss, E. H., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms and commentary (3rd ed.), Cambridge: Oxford University Press.Google Scholar
Tan, J. E., Slick, D. J., Strauss, E., & Hultsch, D. F. (2002). How’d they do it? Malingering strategies on symptom validity tests. The Clinical Neuropsychologist, 16(4), 495505. doi: 10.1076/clin.16.4.495.13909 CrossRefGoogle Scholar
Teichner, G., & Wagner, M. T. (2004). The Test of Memory Malingering (TOMM): Normative data from cognitively intact, cognitively impaired, and elderly patients with dementia. Archives of Clinical Neuropsychology, 19(3), 455464. doi: 10.1016/s0887-6177(03)00078-7 CrossRefGoogle ScholarPubMed
Tombaugh, T. N. (1996). Test of memory malingering: TOMM. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Tombaugh, T. N. (1997). The Test of Memory Malingering (TOMM): Normative data from cognitively intact and cognitively impaired individuals. Psychological Assessment, 9(3), 260268.CrossRefGoogle Scholar
Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 19, 331351.Google ScholarPubMed
Tuholski, S., Engle, R., & Baylis, G. (2001). Individual differences in working memory capacity and enumeration. Memory & Cognition, 29(3), 484492. doi: 10.3758/bf03196399 CrossRefGoogle ScholarPubMed
Tulving, E. (1981). Similarity relations in recognition. Journal of Verbal Learning and Verbal Behavior, 20(5), 479496. doi: 10.1016/s0022-5371(81)90129-8 CrossRefGoogle Scholar
Vallabhajosula, B., & van Gorp, W. G. (2001). Post-Daubert admissibility of scientific evidence on malingering of cognitive deficits. The Journal of the American Academy of Psychiatry and the Law, 29(2), 207215.Google ScholarPubMed
Watt, S., Shores, E. A., & Kinoshita, S. (1999). Effects of reducing attentional resources on implicit and explicit memory after severe traumatic brain injury. Neuropsychology, 13(3), 338349.CrossRefGoogle ScholarPubMed
Weinborn, M., Orr, T., Woods, S. P., Conover, E., & Feix, J. (2003). A validation of the test of memory malingering in a forensic psychiatric setting. Journal of Clinical and Experimental Neuropsychology, 25(7), 979990.CrossRefGoogle Scholar
Weinborn, M., Woods, S. P., Nulsen, C., & Leighton, A. (2012). The effects of coaching on the verbal and nonverbal medical symptom validity tests. The Clinical Neuropsychologist, 26(5), 832849.CrossRefGoogle ScholarPubMed
Whitehouse, A. J., Maybery, M. T., & Durkin, K. (2006). The development of the picture‐superiority effect. British Journal of Developmental Psychology, 24(4), 767773.CrossRefGoogle Scholar
Williams, J. M. (2011). The malingering factor. Archives of Clinical Neuropsychology, 26(3), 280285. doi: 10.1093/arclin/acr009.CrossRefGoogle ScholarPubMed
Woods, S. P., Conover, E., Weinborn, M., Rippeth, J. D., Brill, R. M., Heaton, R. K., & Grant, I. (2003). Base rate of Hiscock Digit Memory Test failure in HIV-associated neurocognitive disorders. [Article]. Clinical Neuropsychologist, 17(3), 383389.CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441517. doi: 10.1006/jmla.2002.2864 CrossRefGoogle Scholar