Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T04:30:10.872Z Has data issue: false hasContentIssue false

Cognitive and Prepulse Inhibition Deficits in Psychometrically High Schizotypal Subjects in the General Population: Relevance to Schizophrenia Research

Published online by Cambridge University Press:  22 May 2012

Stella G. Giakoumaki*
Affiliation:
Department of Psychology, School of Social Sciences, University of Crete, Greece
*
Correspondence and reprint requests to: Stella G. Giakoumaki, Department of Psychology, School of Social Sciences, University of Crete, Gallos University Campus, Rethymno 74100, Crete, Greece. E-mail: sgiakoumaki@psy.soc.uoc.gr

Abstract

Schizophrenia and schizotypal personality disorder share common clinical profiles, neurobiological and genetic substrates along with Prepulse Inhibition and cognitive deficits; among those, executive, attention, and memory dysfunctions are more consistent. Schizotypy is considered to be a non-specific “psychosis-proneness,” and understanding the relationship between schizotypal traits and cognitive function in the general population is a promising approach for endophenotypic research in schizophrenia spectrum disorders. In this review, findings for executive function, attention, memory, and Prepulse Inhibition impairments in psychometrically defined schizotypal subjects have been summarized and compared to schizophrenia patients and their unaffected first-degree relatives. Cognitive flexibility, sustained attention, working memory, and Prepulse Inhibition impairments were consistently reported in high schizotypal subjects in accordance to schizophrenia patients. Genetic studies assessing the effects of various candidate gene polymorphisms in schizotypal traits and cognitive function are promising, further supporting a polygenic mode of inheritance. The implications of the findings, methodological issues, and suggestions for future research are discussed. (JINS, 2012, 18, 1–14)

Type
Critical Review
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, K.M., Jolley, S., Hemsley, D.R., Geyer, M.A. (2004). The influence of schizotypy traits on prepulse inhibition in young healthy controls. Journal of Psychopharmacology, 18, 181188.CrossRefGoogle ScholarPubMed
Addington, J., Cornblatt, B.A., Cadenhead, K.S., Cannon, T.D., McGlashan, T.H., Perkins, D.O., Heinssen, R. (2011). At clinical high risk for psychosis: Outcome for nonconverters. American Journal of Psychiatry, 168, 800805.Google Scholar
Aggernaes, B., Glenthoj, B.Y., Ebdrup, B.H., Rasmussen, H., Lublin, H., Oranje, B. (2010). Sensorimotor gating and habituation in antipsychotic-naive, first-episode schizophrenia patients before and after 6 months’ treatment with quetiapine. International Journal of Neuropsychopharmacology, 13, 13831395.CrossRefGoogle ScholarPubMed
Aguirre, F., Sergi, M.J., Levy, C.A. (2008). Emotional intelligence and social functioning in persons with schizotypy. Schizophrenia Research, 104, 255264.CrossRefGoogle ScholarPubMed
Aleman, A., Hijman, R., de Haan, E.H., Kahn, R.S. (1999). Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry, 156, 13581366.Google Scholar
Altshuler, L.L., Ventura, J., van Gorp, W.G., Green, M.F., Theberge, D.C., Mintz, J. (2004). Neurocognitive function in clinically stable men with bipolar I disorder or schizophrenia and normal control subjects. Biological Psychiatry, 56, 560569.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: American Psychiatric Association.Google Scholar
Andreasen, N.C., O'Leary, D.S., Flaum, M., Nopoulos, P., Watkins, G.L., Boles Ponto, L.L., Hichwa, R.D. (1997). Hypofrontality in schizophrenia: Distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet, 349, 17301734.Google Scholar
Arzy, S., Mohr, C., Michel, C.M., Blanke, O. (2007). Duration and not strength of activation in temporo-parietal cortex positively correlates with schizotypy. Neuroimage, 35, 326333.CrossRefGoogle Scholar
Avramopoulos, D., Stefanis, N.C., Hantoumi, I., Smyrnis, N., Evdokimidis, I., Stefanis, C.N. (2002). Higher scores of self reported schizotypy in healthy young males carrying the COMT high activity allele. Molecular Psychiatry, 7, 706711.CrossRefGoogle ScholarPubMed
Baddeley, A., Della Sala, S., Papagno, C., Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187194.Google Scholar
Badner, J.A., Gershon, E.S. (2002). Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Molecular Psychiatry, 7, 405411.CrossRefGoogle Scholar
Barrantes-Vidal, N., Lewandowski, K.E., Kwapil, T.R. (2010). Psychopathology, social adjustment and personality correlates of schizotypy clusters in a large nonclinical sample. Schizophrenia Research, 122, 219225.CrossRefGoogle Scholar
Bergida, H., Lenzenweger, M.F. (2006). Schizotypy and sustained attention: Confirming evidence from an adult community sample. Journal of Abnormal Psychology, 115, 545551.CrossRefGoogle ScholarPubMed
Bertolino, A., Caforio, G., Petruzzella, V., Latorre, V., Rubino, V., Dimalta, S., Scarabino, T. (2006). Prefrontal dysfunction in schizophrenia controlling for COMT Val158Met genotype and working memory performance. Psychiatry Research, 147, 221226.Google Scholar
Bitsios, P., Giakoumaki, S.G. (2005). Relationship of prepulse inhibition of the startle reflex to attentional and executive mechanisms in man. International Journal of Psychophysiology, 55, 229241.Google Scholar
Bitsios, P., Giakoumaki, S.G., Theou, K., Frangou, S. (2006). Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia, 44, 24942499.CrossRefGoogle ScholarPubMed
Blanchard, J.J., Collins, L.M., Aghevli, M., Leung, W.W., Cohen, A.S. (2011). Social anhedonia and schizotypy in a community sample: The Maryland longitudinal study of schizotypy. Schizophrenia Bulletin, 37, 587602.Google Scholar
Bleuler, E. (1911). Dementia praecox or the group of schizophrenias. New York: International Universities Press.Google Scholar
Blumenthal, T.D., Creps, C.L. (1994). Normal startle responding in psychosis-prone college students. Personality and Individual Differences, 17, 345355.Google Scholar
Braff, D.L. (1993). Information processing and attention dysfunctions in schizophrenia. Schizophrenia Bulletin, 19, 233259.CrossRefGoogle ScholarPubMed
Braff, D.L., Geyer, M.A., Swerdlow, N.R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234258.CrossRefGoogle ScholarPubMed
Braff, D.L., Grillon, C., Geyer, M.A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Archives of General Psychiatry, 49, 206215.CrossRefGoogle ScholarPubMed
Braff, D.L., Light, G.A. (2005). The use of neurophysiological endophenotypes to understand the genetic basis of schizophrenia. Dialogues in Clinical Neuroscience, 7, 25135.CrossRefGoogle ScholarPubMed
Breeze, J.M., Kirkham, A.J., Mari-Beffa, P. (2011). Evidence of reduced selective attention in schizotypal personality disorder. Journal of Clinical and Experimental Neuropsychology, 33, 776784.CrossRefGoogle ScholarPubMed
Brenner, C.A., Edwards, C.R., Carroll, C.A., Kieffaber, P.D., Hetrick, W.P. (2004). P50 and acoustic startle gating are not related in healthy participants. Psychophysiology, 41, 702778.CrossRefGoogle Scholar
Brown, A.S. (2011). The environment and susceptibility to schizophrenia. Progress in Neurobiology, 93, 2358.Google Scholar
Bystritsky, A., Liberman, R.P., Hwang, S., Wallace, C.J., Vapnik, T., Maindment, K., Saxena, S. (2001). Social functioning and quality of life comparisons between obsessive-compulsive and schizophrenic disorders. Depression and Anxiety, 14, 214218.Google Scholar
Cadenhead, K.S., Geyer, M.A., Braff, D.L. (1993). Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. American Journal of Psychiatry, 150, 18621867.Google Scholar
Cadenhead, K., Kumar, C., Braff, D. (1996). Clinical and experimental characteristics of “hypothetically psychosis prone” college students. Journal of Psychiatric Research, 30, 331340.CrossRefGoogle ScholarPubMed
Cadenhead, K.S., Light, G.A., Geyer, M.A., Braff, D.L. (2000). Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder. American Journal of Psychiatry, 157, 5559.Google Scholar
Cadenhead, K.S., Light, G.A., Geyer, M.A., McDowell, J.E., Braff, D.L. (2002). Neurobiological measures of schizotypal personality disorder: Defining an inhibitory endophenotype? American Journal of Psychiatry, 159, 869871.Google Scholar
Cadenhead, K.S., Perry, W., Shafer, K., Braff, D.L. (1999). Cognitive functions in schizotypal personality disorder. Schizophrenia Research, 37, 123132.CrossRefGoogle ScholarPubMed
Cadenhead, K.S., Swerdlow, N.R., Shafer, K.M., Diaz, M., Braff, D.L. (2000). Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: Evidence of inhibitory deficits. American Journal of Psychiatry, 157, 16601668.Google Scholar
Calkins, M.E., Dobie, D.J., Cadenhead, K.S., Olincy, A., Freedman, R., Green, M.F., Braff, D.L. (2007). The Consortium on the Genetics of Endophenotypes in Schizophrenia: Model recruitment, assessment, and endophenotyping methods for a multisite collaboration. Schizophrenia Bulletin, 33, 3348 .Google Scholar
Cannon, T.D., van Erp, T.G., Glahn, D.C. (2002). Elucidating continuities and discontinuities between schizotypy and schizophrenia in the nervous system. Schizophrenia Research, 54, 151156.Google Scholar
Carter, C.S., Perlstein, W., Ganguli, R., Brar, J., Mintun, M., Cohen, J.D. (1998). Functional hypofrontality and working memory dysfunction in schizophrenia. American Journal of Psychiatry, 155, 12851287.Google Scholar
Chan, R.C., Wang, Y., Cheung, E.F., Cui, J., Deng, Y., Yuan, Y., Gong, Q. (2009). Sustained attention deficit along the psychosis proneness continuum: A study on the Sustained Attention to Response Task (SART). Cognitive and Behavioral Neurology, 22, 180185.CrossRefGoogle Scholar
Chang, T.G., Lee, I.H., Chang, C.C., Yang, Y.K., Huang, S.S., Chen, K.C., Chang, Y.H. (2011). Poorer Wisconsin card-sorting test performance in healthy adults with higher positive and negative schizotypal traits. Psychiatry and Clinical Neurosciences, 65, 596599.CrossRefGoogle ScholarPubMed
Chapman, J.P., Chapman, L.J., Raulin, M.L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374382.Google Scholar
Chapman, L.J., Chapman, J.P., Kwapil, T.R., Eckblad, M., Zinser, M.C. (1994). Putatively psychosis-prone subjects 10 years later. Journal of Abnormal Psychology, 103, 171183.CrossRefGoogle ScholarPubMed
Chapman, L.J., Chapman, J.P., Raulin, M.L. (1978). Body-image aberration in schizophrenia. Journal of Abnormal Psychology, 87, 399407.CrossRefGoogle ScholarPubMed
Chen, W.J., Hsiao, C.K., Hsiao, L.L., Hwu, H.G. (1998). Performance of the Continuous Performance Test among community samples. Schizophrenia Bulletin, 24, 163174.Google Scholar
Chen, W.J., Hsiao, C.K., Lin, C.C. (1997). Schizotypy in community samples: The three-factor structure and correlation with sustained attention. Journal of Abnormal Psychology, 106, 649654.CrossRefGoogle ScholarPubMed
Chudasama, Y. (2011). Animal models of prefrontal-executive function. Behavioral Neuroscience, 125, 327343.CrossRefGoogle ScholarPubMed
Cimino, M., Haywood, M. (2008). Inhibition and facilitation in schizotypy. Journal of Clinical and Experimental Neuropsychology, 30, 187198.CrossRefGoogle ScholarPubMed
Cirillo, M.A., Seidman, L.J. (2003). Verbal declarative memory dysfunction in schizophrenia: From clinical assessment to genetics and brain mechanisms. Neuropsychology Review, 13, 4377.CrossRefGoogle ScholarPubMed
Claridge, G. (1985). Origins of mental illness. Oxford: Blackwell Publishing.Google Scholar
Claridge, G., Broks, P. (1984). Schizotypy and hemisphere function: I. Theoretical considerations and the measurement of schizotypy. Personality and Individual Differences, 5, 633648.Google Scholar
Claridge, G., McCreery, C., Mason, O., Bentall, R., Boyle, G., Slade, P., Popplewell, D. (1996). The factor structure of “schizotypal” traits: A large replication study. British Journal of Clinical Psychology, 35, 103115.CrossRefGoogle ScholarPubMed
Cohen, A.S., Davis, T.E. (2009). Quality of life across the schizotypy spectrum: Findings from a large nonclinical adult sample. Comprehensive Psychiatry, 50, 408414.CrossRefGoogle ScholarPubMed
Cohen, A.S., Najolia, G.M. (2011). Birth characteristics and schizotypy: Evidence of a potential “second hit”. Journal of Psychiatric Research, 45, 955961.CrossRefGoogle ScholarPubMed
Coull, J.T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343361.Google Scholar
Crow, T.J. (1985). The two-syndrome concept: Origins and current status. Schizophrenia Bulletin, 11, 471486.CrossRefGoogle ScholarPubMed
Csomor, P.A., Stadler, R.R., Feldon, J., Yee, B.K., Geyer, M.A., Vollenweider, F.X. (2008). Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology, 33, 497512.CrossRefGoogle ScholarPubMed
Dickinson, D., Ramsey, M.E., Gold, J.M. (2007). Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532542.CrossRefGoogle ScholarPubMed
Dickey, C.C., McCarley, R.W., Niznikiewicz, M.A., Voglmaier, M.M., Seidman, L.J., Kim, S., Shenton, M.E. (2005). Clinical, cognitive, and social characteristics of a sample of neuroleptic-naive persons with schizotypal personality disorder. Schizophrenia Research, 78, 297308.CrossRefGoogle ScholarPubMed
Dickey, C.C., McCarley, R.W., Shenton, M.E. (2002). The brain in schizotypal personality disorder: A review of structural MRI and CT findings. Harvard Review of Psychiatry, 10, 115.Google Scholar
Dinn, W.M., Harris, C.L., Aycicegi, A., Greene, P., Andover, M.S. (2002). Positive and negative schizotypy in a student sample: Neurocognitive and clinical correlates. Schizophrenia Research, 56, 171185.Google Scholar
Diwadkar, V.A., Montrose, D.M., Dworakowski, D., Sweeney, J.A., Keshavan, M.S. (2006). Genetically predisposed offspring with schizotypal features: An ultra high-risk group for schizophrenia? Progress in Neuropsychopharmacology and Biological Psychiatry, 30, 230238.CrossRefGoogle Scholar
Dominguez, M.G., Wichers, M., Lieb, R., Wittchen, H.U., van Os, J. (2011). Evidence that onset of clinical psychosis is an outcome of progressively more persistent subclinical psychotic experiences: An 8-year cohort study. Schizophrenia Bulletin, 37, 8493.Google Scholar
Dworkin, R., Lewis, J., Cornblatt, B., Erlenmeyer-Kimling, L. (1994). Social competence deficits in adolescents at risk for schizophrenia. Journal of Nervous and Mental Disease, 182, 103108.Google Scholar
Egan, M.F., Goldberg, T.E., Kolachana, B.S., Callicott, J.H., Mazzanti, C.M., Straub, R.E., Weinberger, D.R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 69176922.Google Scholar
Erlenmeyer-Kimling, L., Squires-Wheeler, E., Adamo, U.H., Bassett, A.S., Cornblatt, B.A., Kestenbaum, C.J., Gottesman, I.I. (1995). The New York High-Risk Project. Psychoses and cluster A personality disorders in offspring of schizophrenic parents at 23 years of follow-up. Archives of General Psychiatry, 52, 857865.CrossRefGoogle Scholar
Ettinger, U., Williams, S.C., Meisenzahl, E.M., Möller, H.J., Kumari, V., Koutsouleris, N. (2011). Association between brain structure and psychometric schizotypy in healthy individuals. World Journal of Biological Psychiatry [Epub ahead of print].Google ScholarPubMed
Evans, L.H., Gray, N.S., Snowden, R.J. (2005). Prepulse inhibition of startle and its moderation by schizotypy and smoking. Psychophysiology, 42, 223231.CrossRefGoogle ScholarPubMed
Evans, L.H., Gray, N.S., Snowden, R.J. (2007). Reduced P50 suppression is associated with the cognitive disorganisation dimension of schizotypy. Schizophrenia Research, 97, 152162.CrossRefGoogle ScholarPubMed
Eysenck, H., Eysenck, S. (1975). Manual of the Eysenck Personality Questionnaire. London: Hodder and Stroughton.Google Scholar
Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347.Google Scholar
Faraone, S.V., Green, A.I., Seidman, L.J., Tsuang, M.T. (2001). “Schizotaxia”: Clinical implications and new directions for research. Schizophrenia Bulletin, 27, 118.Google Scholar
Ferraro, F.R., Okerlund, M. (1995). Implicit memory of nonclinical schizotypal individuals. Perceptual and Motor Skills, 80, 371376.Google Scholar
Fioravanti, M., Carlone, O., Vitale, B., Cinti, M.E., Clare, L. (2005). A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychology Review, 15, 7395.Google Scholar
Fonseca-Pedrero, E., Lemos-Giráldez, S., Paíno-Piñeiro, M., Villazón-García, U., Muñiz, J. (2010). Schizotypal traits, obsessive-compulsive symptoms, and social functioning in adolescents. Comprehensive Psychiatry, 51, 7177.CrossRefGoogle ScholarPubMed
Frangou, S. (2010). Cognitive function in early onset schizophrenia: A selective review. Frontiers in Human Neuroscience, 3, 79.Google Scholar
Garavan, H., Ross, T.J., Li, S.J., Stein, E.A. (2000). A parametric manipulation of central executive functioning. Cerebral Cortex, 10, 585592.Google Scholar
Giakoumaki, S.G., Bitsios, P., Frangou, S. (2006). The level of prepulse inhibition in healthy individuals may index cortical modulation of early information processing. Brain Research, 1078, 168170.Google Scholar
Giakoumaki, S.G., Roussos, P., Pallis, E.G., Bitsios, P. (2011). Sustained attention and working memory deficits follow a familial pattern in schizophrenia. Archives of Clinical Neuropsychology, 26, 687695.Google Scholar
Goldberg, T.E., Saint-Cyr, J.A., Weinberger, D.R. (1990). Assessment of procedural learning and problem solving in schizophrenic patients by Tower of Hanoi type tasks. Journal of Neuropsychiatry and Clinical Neuroscience, 2, 165173.Google Scholar
Goldman-Rakic, P.S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry and Clinical Neuroscience, 6, 348357.Google Scholar
Gooding, D.C., Kwapil, T.R., Tallent, K.A. (1999). Wisconsin Card Sorting Test deficits in schizotypic individuals. Schizophrenia Research, 40, 201209.CrossRefGoogle ScholarPubMed
Gooding, D.C., Matts, C.W., Rollmann, E.A. (2006). Sustained attention deficits in relation to psychometrically identified schizotypy: Evaluating a potential endophenotypic marker. Schizophrenia Research, 82, 2737.CrossRefGoogle ScholarPubMed
Gooding, D.C., Tallent, K.A., Matts, C.W. (2005). Clinical status of at-risk individuals 5 years later: Further validation of the psychometric high-risk strategy. Journal of Abnormal Psychology, 114, 170175.Google Scholar
Gooding, D.C., Tallent, K.A., Matts, C.W. (2007). Rates of avoidant, schizotypal, schizoid and paranoid personality disorders in psychometric high-risk groups at 5-year follow-up. Schizophrenia Research, 94, 373374.CrossRefGoogle Scholar
Gottesman, I.I., Shields, J. (1982). Schizophrenia: The epigenetic puzzle. New York: Cambridge University Press.Google Scholar
Green, E.K., Grozeva, D., Jones, I., Jones, L., Kirov, G., Caesar, S., Craddock, N. (2010). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 15, 10161022.CrossRefGoogle ScholarPubMed
Green, M.F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153, 321330.Google ScholarPubMed
Gruzelier, J.H. (2003). Theory, methods and new directions in the psychophysiology of the schizophrenic process and schizotypy. International Journal of Psychophysiology, 48, 221245.CrossRefGoogle ScholarPubMed
Hammer, T.B., Oranje, B., Fagerlund, B., Bro, H., Glenthøj, B.Y. (2011). Stability of prepulse inhibition and habituation of the startle reflex in schizophrenia: A 6-year follow-up study of initially antipsychotic-naive, first-episode schizophrenia patients. International Journal of Neuropsychopharmacology, 14, 913925.Google Scholar
Harvey, P.D. (2011). Mood symptoms, cognition, and everyday functioning: In major depression, bipolar disorder, and schizophrenia. Innovations in Clinical Neuroscience, 8, 1418.Google Scholar
Hazlett, E.A., Buchsbaum, M.S., Haznedar, M.M., Newmark, R., Goldstein, K.E., Zelmanova, Y., Siever, L.J. (2008). Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophrenia Research, 101, 111123.Google Scholar
Hazlett, E.A., Buchsbaum, M.S., Zhang, J., Newmark, R.E., Glanton, C.F., Zelmanova, Y., Siever, L.J. (2008). Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. Neuroimage, 42, 11641177.Google Scholar
Hazlett, E.A., Levine, J., Buchsbaum, M.S., Silverman, J.M., New, A., Sevin, E.M., Siever, L.J. (2003). Deficient attentional modulation of the startle response in patients with schizotypal personality disorder. American Journal of Psychiatry, 160, 6211626.Google Scholar
Hazlett, E.A., Romero, M.J., Haznedar, M.M., New, A.S., Goldstein, K.E., Newmark, R.E., Buchsbaum, M.S. (2007). Deficient attentional modulation of startle eyeblink is associated with symptom severity in the schizophrenia spectrum. Schizophrenia Research, 93, 288295.Google Scholar
Heinrichs, R.W., Zakzanis, K.K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12, 426445.Google Scholar
Henry, J.D., Bailey, P.E., Rendell, P.G. (2008). Empathy, social functioning and schizotypy. Psychiatry Research, 160, 1522.Google Scholar
Henry, J.D., Crawford, J.R. (2005). A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cognitive Neuropsychiatry, 10, 133.Google Scholar
Heydebrand, G. (2006). Cognitive deficits in the families of patients with schizophrenia. Current Opinions in Psychiatry, 19, 277281.Google Scholar
Hill, S.K., Harris, M.S., Herbener, E.S., Pavuluri, M., Sweeney, J.A. (2008). Neurocognitive allied phenotypes for schizophrenia and bipolar disorder. Schizophrenia Bulletin, 34, 743759.CrossRefGoogle ScholarPubMed
Hori, H., Nagamine, M., Soshi, T., Okabe, S., Kim, Y., Kunugi, H. (2008). Schizotypal traits in healthy women predict prefrontal activation patterns during a verbal fluency task: A near-infrared spectroscopy study. Neuropsychobiology, 57, 6169.Google Scholar
Hori, H., Teraishi, T., Sasayama, D., Matsuo, J., Kawamoto, Y., Kinoshita, Y., Kunugi, H. (2012). Relationships between season of birth, schizotypy, temperament, character and neurocognition in a non-clinical population. Psychiatry Research, 195, 6975.Google Scholar
Jahshan, C.S., Sergi, M.J. (2007). Theory of mind, neurocognition, and functional status in schizotypy. Schizophrenia Research, 89, 278286.Google Scholar
James, W. (1890). The principles of psychology (Vol. 1, pp. 403404). New York: Henry Holt.Google Scholar
Kane, M.J., Engle, R.W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review, 9, 637671.CrossRefGoogle ScholarPubMed
Karayiorgou, M., Gogos, J.A. (1997). A turning point in schizophrenia genetics. Neuron, 19, 967979.Google Scholar
Kendler, K.S., Gruenberg, A.M., Strauss, J.S. (1981). An independent analysis of the Copenhagen sample of the Danish adoption study of schizophrenia, II: The relationship between schizotypal personality disorder and schizophrenia. Archives of General Psychiatry, 38, 982998.Google Scholar
Kendler, K.S., Lieberman, J.A., Walsh, D. (1989). The Structured Interview for Schizotypy (SIS): A preliminary report. Schizophrenia Bulletin, 15, 559571.Google Scholar
Kendler, K.S., McGuire, M., Gruenberg, A.M., O'Hare, A., Spellman, M., Walsh, D. (1993). The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Archives of General Psychiatry, 50, 527540.Google Scholar
Kendler, K.S., Ochs, A.L., Gorman, A.M., Hewitt, J.K., Ross, D.E., Mirsky, A.F. (1991). The structure of schizotypy: A pilot multitrait twin study. Psychiatry Research, 36, 1936.Google Scholar
Kéri, S., Janka, Z. (2004). Critical evaluation of cognitive dysfunctions as endophenotypes of schizophrenia. Acta Psychiatrica Scandinavica, 110, 8391.Google Scholar
Kerns, J.G., Becker, T.M. (2008). Communication disturbances, working memory, and emotion in people with elevated disorganized schizotypy. Schizophrenia Research, 100, 172180.Google Scholar
Kim, M.S., Oh, S.H., Hong, M.H., Choi, D.B. (2011). Neuropsychologic profile of college students with schizotypal traits. Comprehensive Psychiatry, 52, 511516.Google Scholar
Kirrane, R.M., Siever, L.J. (2000). New perspectives on schizotypal personality disorder. Current Psychiatry Reports, 2, 6266.Google Scholar
Kraepelin, E. (1913). Dementia praecox and paraphrenia. Edinburgh: E & S Livingston.Google Scholar
Kumari, V., Antonova, E., Geyer, M.A. (2008). Prepulse inhibition and “psychosis-proneness” in healthy individuals: An fMRI study. European Psychiatry, 23, 274280.CrossRefGoogle ScholarPubMed
Kumari, V., Antonova, E., Geyer, M.A., ffytche, D., Williams, S.C., Sharma, T. (2007). A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. International Journal of Neuropsychopharmacology, 10, 463477.CrossRefGoogle ScholarPubMed
Kumari, V., Fannon, D., Sumich, A.L., Sharma, T. (2007). Startle gating in antipsychotic-naïve first episode schizophrenia patients: One ear is better than two. Psychiatry Research, 151, 2128.Google Scholar
Kumari, V., Gray, J.A., Geyer, M.A., ffytche, D., Soni, W., Sharma, T. (2003). Neural correlates of tactile prepulse inhibition: A functional MRI study in normal and schizophrenic subjects. Psychiatry Research, 122, 99113.Google Scholar
LaPorte, D.J., Kirkpatrick, B., Thaker, G.K. (1994). Psychosis-proneness and verbal memory in a college student population. Schizophrenia Research, 12, 237445.Google Scholar
Laws, K.R. (1999). A meta-analytic review of Wisconsin Card Sort studies in schizophrenia: General intellectual deficit in disguise? Cognitive Neuropsychiatry, 4, 130.Google Scholar
Laws, K.R., Patel, D.D., Tyson, P.J. (2008). Awareness of everyday executive difficulties precede overt executive dysfunction in schizotypal subjects. Psychiatry Research, 160, 814.Google Scholar
Laurent, A., Duly, D., Murry, P., Foussard, N., Boccara, S., Mingat, F., d'Amato, T. (2001). WCST performance and schizotypal features in the first-degree relatives of patients with schizophrenia. Psychiatry Research, 104, 133144.Google Scholar
Lee, J., Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114, 599611.Google Scholar
Lenzenweger, M.F., Cornblatt, B.A., Putnick, M. (1991). Schizotypy and sustained attention. Journal of Abnormal Psychology, 100, 8489.Google Scholar
Lenzenweger, M.F., Gold, J.M. (2000). Auditory working memory and verbal recall memory in schizotypy. Schizophrenia Research, 42, 101110.Google Scholar
Lenzenweger, M.F., Korfine, L. (1994). Perceptual aberrations, schizotypy, and the Wisconsin Card Sorting Test. Schizophrenia Bulletin, 20, 345357.Google Scholar
Le Pelley, M.E., Schmidt-Hansen, M., Harris, N.J., Lunter, C.M., Morris, C.S. (2010). Disentangling the attentional deficit in schizophrenia: Pointers from schizotypy. Psychiatry Research, 176, 143149.CrossRefGoogle ScholarPubMed
Lewandowski, K.E., Barrantes-Vidal, N., Nelson-Gray, R.O., Clancy, C., Kepley, H.O., Kwapil, T.R. (2006). Anxiety and depression symptoms in psychometrically identified schizotypy. Schizophrenia Research, 83, 225235.Google Scholar
Li, T., Ma, X., Sham, P.C., Sun, X., Hu, X., Wang, Q., Collier, D.A. (2004). Evidence for association between novel polymorphisms in the PRODH gene and schizophrenia in a Chinese population. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 129B, 1315.Google Scholar
Light, G.A., Braff, D.L. (2001). Measuring P50 suppression and prepulse inhibition in a single recording session. American Journal of Psychiatry, 158, 20662068.Google Scholar
Linney, Y.M., Murray, R.M., Peters, E.R., MacDonald, A.M., Rijsdijk, F., Sham, P.C. (2003). A quantitative genetic analysis of schizotypal personality traits. Psychological Medicine, 33, 803816.Google Scholar
Linscott, R.J., Marie, D., Arnott, K.L., Clarke, B.L. (2006). Over-representation of Maori New Zealanders among adolescents in a schizotypy taxon. Schizophrenia Research, 84, 289296.Google Scholar
Liu, H., Heath, S.C., Sobin, C., Roos, J.L., Galke, B.L., Blundell, M.L., Karayiorgou, M. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 37173722.Google Scholar
Ludewig, K., Geyer, M.A., Vollenweider, F.X. (2003). Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biological Psychiatry, 54, 121128.Google Scholar
Ma, X., Sun, J., Yao, J., Wang, Q., Hu, X., Deng, W., Li, T. (2007). A quantitative association study between schizotypal traits and COMT, PRODH and BDNF genes in a healthy Chinese population. Psychiatry Research, 153, 715.Google Scholar
Mackeprang, T., Kristiansen, K.T., Glenthoj, B.Y. (2002). Effects of antipsychotics on prepulse inhibition of the startle response in drug-naïve schizophrenic patients. Biological Psychiatry, 52, 863873.Google Scholar
Mannan, M.R., Hiramatsu, K.I., Hokama, H., Ohta, H. (2001). Abnormalities of auditory event-related potentials in students with schizotypal personality disorder. Psychiatry and Clinical Neurosciences, 55, 451457.Google Scholar
Mason, O., Claridge, G., Jackson, M. (1995). New scales for the assessment of schizotypy. Personality and Individual Differences, 18, 713.CrossRefGoogle Scholar
Matheson, S., Langdon, R. (2008). Schizotypal traits impact upon executive working memory and aspects of IQ. Psychiatry Research, 159, 207214.Google Scholar
Matsui, M., Sumiyoshi, T., Kato, K., Yoneyama, E., Kurachi, M. (2004). Neuropsychological profile in patients with schizotypal personality disorder or schizophrenia. Psychology Report, 94, 387397.Google Scholar
Matsui, M., Suzuki, M., Zhou, S.Y., Takahashi, T., Kawasaki, Y., Yuuki, H., Kurachi, M. (2008). The relationship between prefrontal brain volume and characteristics of memory strategy in schizophrenia spectrum disorders. Progress in Neuropsychopharmacology and Biological Psychiatry, 32, 18541862.Google Scholar
Matsui, M., Yuuki, H., Kato, K., Takeuchi, A., Nishiyama, S., Bilker, W.B., Kurachi, M. (2007). Schizotypal disorder and schizophrenia: A profile analysis of neuropsychological functioning in Japanese patients. Journal of the International Neuropsychological Society, 13, 672682.Google Scholar
Meehl, P.E. (1989). Schizotaxia revisited. Archives of General Psychiatry, 46, 935944.Google Scholar
Miller, B.L., Cummings, J.L. (2007). The human frontal lobes: Functions and disorders (2nd ed., p. 27). New York: Guilford Press.Google Scholar
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Noguchi, H., Hori, H., Kunugi, H. (2008). Schizotypal traits and cognitive function in healthy adults. Psychiatry Research, 161, 162169.Google Scholar
Obiols, J.E., Clos, M., Corberó, E., García-Domingo, M., de Trinchería, I., Doménech, E. (1992). Sustained attention deficit in young schizophrenic and schizotypic men. Psychological Reports, 71, 11311136.CrossRefGoogle ScholarPubMed
Palmer, B.W., Heaton, R.K. (2000). Executive dysfunction in schizophrenia. In T. Sharma & P.D. Harvey (Eds.), Cognition in schizophrenia: Impairments, importance and treatment strategies, (pp. 5172). Oxford: Oxford University Press.Google Scholar
Park, S., Holzman, P.S., Lenzenweger, M.F. (1995). Individual differences in spatial working memory in relation to schizotypy. Journal of Abnormal Psychology, 104, 355363.Google Scholar
Park, S., McTigue, K. (1997). Working memory and the syndromes of schizotypal personality. Schizophrenia Research, 26, 213220.Google Scholar
Poulton, R., Caspi, A., Moffitt, T.E., Cannon, M., Murray, R., Harrington, H. (2000). Children's self-reported psychotic symptoms and adult schizophreniform disorder: A 15-year longitudinal study. Archives of General Psychiatry, 57, 10531058.Google Scholar
Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSMIII-R criteria. Schizophrenia Bulletin, 17, 555564.Google Scholar
Raine, A. (2006). Schizotypal personality: Neurodevelopmental and psychosocial trajectories. Annual Review of Clinical Psychology, 2, 291326.Google Scholar
Roussos, P., Giakoumaki, S.G., Bitsios, P. (2009). A risk PRODH haplotype affects sensorimotor gating, memory, schizotypy, and anxiety in healthy male subjects. Biological Psychiatry, 65, 10631070.Google Scholar
Roussos, P., Giakoumaki, S.G., Georgakopoulos, A., Robakis, N.K., Bitsios, P. (2011). The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disorders, 13, 250259.Google Scholar
Schell, A.M., Dawson, M.E., Hazlett, E.A., Filion, D.L. (1995). Attentional modulation of startle in psychosis-prone college students. Psychophysiology, 32, 266273.Google Scholar
Schérer, H., Stip, E., Paquet, F., Bédard, M.A. (2003). Mild procedural learning disturbances in neuroleptic-naive patients with schizophrenia. Journal of Neuropsychiatry and Clinical Neuroscience, 15, 5863.Google Scholar
Schürhoff, F., Szöke, A., Chevalier, F., Roy, I., Méary, A., Bellivier, F., Leboyer, M. (2007). Schizotypal dimensions: An intermediate phenotype associated with the COMT high activity allele. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 6468.Google Scholar
Schwarzkopf, S.B., Lamberti, J.S., Smith, D.A. (1993). Concurrent assessment of acoustic startle and auditory P50 evoked potential measures of sensory inhibition. Biological Psychiatry, 33, 815828.Google Scholar
Seghers, J.P., McCleery, A., Docherty, N.M. (2011). Schizotypy, alexithymia, and socioemotional outcomes. Journal of Nervous and Mental Disease, 199, 117121.CrossRefGoogle ScholarPubMed
Sheldrick, A.J., Krug, A., Markov, V., Leube, D., Michel, T.M., Zerres, K., Kircher, T. (2008). Effect of COMT val158met genotype on cognition and personality. European Psychiatry, 23, 385389.Google Scholar
Siever, L.J., Davis, K.L. (2004). The pathophysiology of schizophrenia disorders: Perspectives from the spectrum. American Journal of Psychiatry, 161, 398413.Google Scholar
Simons, R.F., Giardina, R.D. (1992). Reflex modification in psychosis-prone young adults. Psychophysiology, 29, 816.CrossRefGoogle ScholarPubMed
Skodol, A.E., Gunderson, J.G., McGlashan, T.H., Dyck, I.R., Stout, R.L., Bender, D.S., Oldham, J.M. (2002). Functional impairment in patients with schizotypal, borderline, avoidant, or obsessive-compulsive personality disorder. American Journal of Psychiatry, 159, 276283.Google Scholar
Smyrnis, N., Avramopoulos, D., Evdokimidis, I., Stefanis, C.N., Tsekou, H., Stefanis, N.C. (2007). Effect of schizotypy on cognitive performance and its tuning by COMT val158 met genotype variations in a large population of young men. Biological Psychiatry, 61, 845853.Google Scholar
Spaulding, W., Garbin, C.P., Dras, S.R. (1989). Cognitive abnormalities in schizophrenic patients and schizotypal college students. Journal of Nervous and Mental Disease, 177, 717728.Google Scholar
Spitznagel, M.B., Suhr, J.A. (2002). Executive function deficits associated with symptoms of schizotypy and obsessive-compulsive disorder. Psychiatry Research, 110, 151163.Google Scholar
Squire, L.R., Zola, S.M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93, 1351513522.Google Scholar
Startup, M. (1999). Schizotypy, dissociative experiences and childhood abuse: Relationships among self-report measures. British Journal of Clinical Psychology, 38, 333344.CrossRefGoogle ScholarPubMed
Steel, C., Marzillier, S., Fearon, P., Ruddle, A. (2009). Childhood abuse and schizotypal personality. Social Psychiatry and Psychiatric Epidemiology, 44, 917923.Google Scholar
Stefanis, N.C., Trikalinos, T.A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E.E., Stefanis, C.N. (2007). Impact of schizophrenia candidate genes on schizotypy and cognitive endophenotypes at the population level. Biological Psychiatry, 62, 784792.Google Scholar
Stefanis, N.C., Trikalinos, T.A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E.E., Stefanis, C.N. (2008). Association of RGS4 variants with schizotypy and cognitive endophenotypes at the population level. Behavior and Brain Function, 4, 46.Google Scholar
Stefanopoulou, E., Manoharan, A., Landau, S., Geddes, J.R., Goodwin, G., Frangou, S. (2009). Cognitive functioning in patients with affective disorders and schizophrenia: A meta-analysis. International Review of Psychiatry, 21, 336356.Google Scholar
Strauss, E., Sherman, E.M.S., Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms and commentary (3rd ed). New York: Oxford University Press.Google Scholar
Stuss, D.T., Alexander, M.P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63, 289298.CrossRefGoogle ScholarPubMed
Suhr, J.A. (1997). Executive functioning deficits in hypothetically psychosis-prone college students. Schizophrenia Research, 27, 2935.Google Scholar
Suhr, J.A., Spitznagel, M.B. (2001). Factor versus cluster models of schizotypal traits. II: Relation to neuropsychological impairment. Schizophrenia Research, 52, 241250.Google Scholar
Sumich, A., Kumari, V., Gordon, E., Tunstall, N., Brammer, M. (2008). Event-related potential correlates of paranormal ideation and unusual experiences. Cortex, 44, 13421352.Google Scholar
Swerdlow, N.R., Filion, D., Geyer, M.A., Braff, D.L. (1995). “Normal” personality correlates of sensorimotor, cognitive, and visuospatial gating. Biological Psychiatry, 37, 286299.Google Scholar
Takahashi, H., Iwase, M., Canuet, L., Yasuda, Y., Ohi, K., Fukumoto, M., Takeda, M. (2010). Relationship between prepulse inhibition of acoustic startle response and schizotypy in healthy Japanese subjects. Psychophysiology, 47, 831837.Google Scholar
Tallent, K.A., Gooding, D.C. (1999). Working memory and Wisconsin Card Sorting Test performance in schizotypic individuals: A replication and extension. Psychiatry Research, 89, 161170.Google Scholar
Thaker, G., Adami, H., Gold, J. (2001). Functional deterioration in individuals with schizophrenia spectrum personality symptoms. Journal of Personality Disorders, 15, 229234.Google Scholar
Thaker, G.K. (2008). Neurophysiological endophenotypes across bipolar and schizophrenia psychosis. Schizophrenia Bulletin, 34, 760773.Google Scholar
Trestman, R.L., Horvath, T., Kalus, O., Peterson, A.E., Coccaro, E., Mitropoulou, V., Siever, L.J. (1996). Event-related potentials in schizotypal personality disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 8, 3340.Google Scholar
Turetsky, B.I., Calkins, M.E., Light, G.A., Olincy, A., Radant, A.D., Swerdlow, N.R. (2007). Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures. Schizophrenia Bulletin, 33, 6994.CrossRefGoogle ScholarPubMed
van Os, J., Linscott, R.J., Myin-Germeys, I., Delespaul, P., Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 39, 179195.Google Scholar
Venables, P.H. (1996). Schizotypy and maternal exposure to influenza and to cold temperature: The Mauritius study. Journal of Abnormal Psychology, 105, 5360.Google Scholar
Wager, T.D., Smith, E.E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective and Behavioral Neuroscience, 3, 255274.Google Scholar
Welham, J., Scott, J., Williams, G., Najman, J., Bor, W., O'Callaghan, M., McGrath, J. (2009). Emotional and behavioural antecedents of young adults who screen positive for non-affective psychosis: A 21-year birth cohort study. Psychological Medicine, 39, 625634.Google Scholar
Whyte, M.C., McIntosh, A.M., Johnstone, E.C., Lawrie, S.M. (2005). Declarative memory in unaffected adult relatives of patients with schizophrenia: A systematic review and meta-analysis. Schizophrenia Research, 78, 1326.Google Scholar
Yasuda, Y., Hashimoto, R., Ohi, K., Fukumoto, M., Umeda-Yano, S., Yamamori, H., Takeda, M. (2011). Impact on schizotypal personality trait of a genome-wide supported psychosis variant of the ZNF804A gene. Neuroscience Letters, 495, 216220.Google Scholar