Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:36:32.447Z Has data issue: false hasContentIssue false

Cognitive Rehabilitation of Memory for Mild Cognitive Impairment: A Methodological Review and Model for Future Research

Published online by Cambridge University Press:  13 December 2013

Benjamin M. Hampstead*
Affiliation:
Rehabilitation R&D Center of Excellence, Atlanta VAMC, Decatur, Georgia Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
M. Meredith Gillis
Affiliation:
Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
Anthony Y. Stringer
Affiliation:
Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia Department of Psychology, Emory University, Atlanta, Georgia
*
Correspondence and reprint requests to: Benjamin M. Hampstead, 1441 Clifton Road NE Room 150, Atlanta, GA 30087. E-mail: bhampst@emory.edu

Abstract

Several recent reviews have suggested that cognitive rehabilitation may hold promise in the treatment of memory deficits experienced by patients with mild cognitive impairment. In contrast to the previous reviews that mainly focused on outcome, the current review examines key methodological challenges that are critical for designing and interpreting research studies and translating results into clinical practice. Using methodological details from 36 studies, we first examine diagnostic variability and how the use of cutoffs may bias samples toward more severely impaired patients. Second, the strengths and limitations of several common rehabilitative techniques are discussed. Half of the reviewed studies used a multi-technique approach that precludes the causal attribution between any specific technique and subsequent improvement. Third, there is a clear need to examine the dose-response relationship since this information was strikingly absent from most studies. Fourth, outcome measures varied widely and frequently depended on neuropsychological tests with little theoretical justification or ecological relevance. Fifth, we discuss how the variability in each of these other four areas complicates efforts to examine training generalization. Overall, future studies should place greater emphasis on ecologically relevant treatment approaches and outcome measures and we propose a hierarchical model that may aid in this pursuit. (JINS, 2014, 19, 1–17)

Type
Critical Review
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7, 270279.Google Scholar
Albert, M. S., Moss, M. B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.Google Scholar
Allain, H., Bentue-Ferrer, D., Akwa, Y. (2007). Treatment of the mild cognitive impairment (MCI). Human Psychopharmacology: Clinical and Experimental, 22, 189197.Google Scholar
1 Akhtar, S., Moulin, C. J., Bowie, P. C. (2006). Are people with mild cognitive impairment aware of the benefits of errorless learning? Neuropsychological Rehabilitation, 16, 329346.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
Bahar-Fuchs, A., Clare, L., Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementi. Cochrane Database Systematic Reviews, 6, 1100.Google Scholar
2 Barnes, D. E., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., Kramer, J. H. (2009). Computer-based cognitive training for mild cognitive impairment results from a pilot randomized, controlled trial. Alzheimer Disease and Associated Disorders, 23, 205210.Google Scholar
Belleville, S. (2008). Cognitive training for persons with mild cognitive impairment. International Psychogeriatric, 20, 5766.Google Scholar
Belleville, S., Bherer, L. (2012). Biomarkers of cognitive training effects in aging. Current Translational Geriatrics & Experimental Gerontology Reports, 1(2), 104110.Google Scholar
3 Belleville, S., Gilbert, B., Fontaine, F., Gagnon, L., Menard, E., Gauthier, S. (2006). Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: Evidence from a cognitive intervention program. Dementia and Geriatric Cognitive Disorders, 22, 486499.Google Scholar
4 Belleville, S., Clement, F., Mellah, S., Gilbert, B., Fontane, F., Gauthier, S. (2011). Training related brain plasticity in subjects at risk of developing Alzheimer's disease. Brain, 134(4), 16231634.Google Scholar
Boyd, L. A., Winstein, C. J. (2003). Impact of explicit information on implicit motorsequence learning following middle cerebral artery stroke. Physical Therapy, 83, 976989.Google Scholar
Bjornebekk, A., Westlye, L. T., Walhovd, K. B., Fjell, A. M. (2010). Everyday memory: Self-perception and structural brain correlates in a healthy elderly population. Journal of the International Neuropsychological Society, 16, 11151126.Google Scholar
Boyle, P. A., Wilson, R. S., Aggarwal, N. T., Tang, Y., Bennett, D. A. (2006). Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology, 67, 441445.Google Scholar
Brookmeyer, R., Evans, D. A., Herbert, L., Langa, K. M., Heeringa, S. G., Plassman, B. L., Kukull, W. A. (2011). National estimates of the prevalence of Alzheimer's disease in the United States. Alzheimer's Dementia, 7(1), 6173.Google Scholar
Brown P. J., Devanand D. P., Liu X., Caccappolo E., & the Alzheimer's Disease Neuroimaging Initiative. (2011). Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer's disease. Archives of General Psychiatry, 68(6), 617626.Google Scholar
Burton, C. L., Strauss, E., Bunce, D., Hunter, M. A., Hultsch, D. F. (2009). Functional abilities in older adults with mild cognitive impairment. Gerontology, 55, 570581.Google Scholar
5 Buschert, V. C., Friese, U., Teipel, S. J., Schneider, P., Merensky, W., Rujescu, D., Buerger, K. (2011). Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer's disease: A pilot study. Journal of Alzheimer's Disease, 25, 679694.Google Scholar
Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P., Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125(4), 773788.Google Scholar
6 Carretti, B., Borella, E., Zavagnin, M., De Beni, R. (2011). Impact of metacognition and motivation on the efficacy of strategic memory training in older adults. Archives of Gerontology and Geriatrics, 52(3), e192e197.CrossRefGoogle ScholarPubMed
Chen, H., Gu, Y., Wang, C., Lv, M., Wang, L., Gu, J. (2008). Community based intervention for mild cognitive impairment (in Chinese). Chinese Primary Health Care, 22, 1719.Google Scholar
Cherry, K. E., Walvoord, A. A. G., Hawley, K. S. (2010). Spaced retrieval enhances memory for a name-face-occupation association in older adults with probable Alzheimer's disease. The Journal of Genetic Psychology, 171(2), 168181.Google Scholar
Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86, 16811692.Google Scholar
Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., Ashman, T. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical Medicine and Rehabilitation, 92, 519530.CrossRefGoogle ScholarPubMed
7 Cipriani, G., Bianchetti, A., Trabucchi, M. (2006). Outcomes of a computer-based cognitive rehabilitation program on Alzheimer's disease patients compared with those on patients affected by mild cognitive impairment. Archives of Gerontology and Geriatrics, 43, 327335.Google Scholar
Clare, L., Jones, R. S. P. (2008). Errorless learning in the rehabilitation of memory impairment: A critical review. Neuropsychology Review, 18(1), 123.Google Scholar
8 Clare, L., van Paasschen, J., Evans, S. J., Parkinson, C., Woods, R. T., Linden, D. E. J. (2009). Goal-oriented cognitive rehabilitation for an individual with mild cognitive impairment: Behavioural and neuroimaging outcomes. Neurocase, 16, 114.Google Scholar
Cotelli, M., Menenti, R., Zanetti, O., Miniussi, C. (2012). Non-pharmacological intervention for memory decline. Frontiers in Human Neuroscience, 6(article 46), 117.Google Scholar
Craik, F. I. M., Winocur, G., Palmer, H., Binns, M. A., Edwards, M., Bridges, K., Stuss, D. T. (2007). Cognitive rehabilitation in the elderly: Effects on memory. Journal of the International Neuropsychological Society, 13, 132142.Google Scholar
D'Amato, T., Bation, R., Cochet, A., Jalenques, I., Galland, F., Giraud-Baro, E. (2011). A randomized, controlled trial of computer-assisted cognitive remediation for schizophrenia. Schizophrenia Research, 125, 284290.Google Scholar
Daviglus, M. L., Bell, C. C., Berrettini, W., Bowen, P. E., Connolly, E. S., Cox, N. J., Trevisan, M. (2010). National Institutes of Health State-of-the-Science Conference Statement: Preventing Alzheimer's disease and cognitive decline. NIH Consens State Sci Statements, 27(4), 130.Google ScholarPubMed
Delis, D. C., Kramer, J. H., Kaplan, E., Ober, B. A. (2000). California Verbal Learning Test (CVLT) (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Diniz, B. S., Pinto, J. A. Jr., Gonzaga, M. L., Guimaraes, F. M., Gattaz, W. F., Forlenza, O. V. T. (2009). To treat or not to treat? A meta-analysis of the use of cholinesterase inhibitors in mild cognitive impairment for delaying progression to Alzheimer's disease. European Archives of Psychiatry and Clinical Neuroscience, 259(4), 248256.Google Scholar
Estevez-Gonzalez, A., Kulisevsky, J., Boltes, A., Otermin, P., Garcia-Sanchez, C. (2003). Rey verbal learning test is a useful tool for differential diagnosis in the preclinincal phase of Alzheimer's disease: Comparison with mild cognitive impairment and normal aging. International Journal of Geriatric Psychiatry, 18, 10211028.CrossRefGoogle Scholar
Farias, S. T., Harrell, E., Neumann, C., Houtz, A. (2003). The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer's disease: Ecological validity of neuropsychological tests. Archives of Clinical Neuropsychology, 18, 655672.Google Scholar
Farlow, M. R. (2009). Treatment of mild cognitive impairment (MCI). Current Alzheimer's Research, 6(4), 362367.Google Scholar
9 Finn, M., McDonald, S. (2011). Computerised cognitive training for older persons with mild cognitive impairment: A pilot study using a randomised controlled trial design. Brain Impairment, 12(3), 187189.Google Scholar
Fischer, H. (2010). A history of the central limit theorem: From classical to modern probability theory. New York: Springer.Google Scholar
Folstein, M., Folstein, S. E., McHugh, P. R. (1975). Mini-Mental State: A practical method for grading the cognitive status of patients for the clinician. Journal of Psychiatric Research, 12, 189198.Google Scholar
Gillis, M. M., Quinn, K. M., Phillips, P. A. T., Hampstead, B. M. (2013). Impaired retention is responsible for temporal order memory deficits in mild cognitive impairment. Acta Psychologica, 143, 8895.Google Scholar
10 Greenaway, M. C., Hanna, S. M., Lepore, S. W., Smith, G. E. (2008). A behavioral rehabilitation intervention for amnestic mild cognitive impairment. American Journal of Alzheimer's Disease and Other Dementias, 23, 451461.Google Scholar
11 Greenaway, M. C., Duncan, N. L., Smith, G. E. (2013). The memory support system for mild cognitive impairment: Randomized trial of a cognitive rehabilitation intervention. International Journal of Geriatric Psychiatry, 28, 402409.Google Scholar
12 Gunther, V. K., Schafer, P., Holzner, B. J., Kemmler, G. W. (2003). Long-term improvements in cognitive performance through computer-assisted cognitive training: A pilot study in a residential home for older people. Aging & Mental Health, 7(3), 200206.Google Scholar
13 Hampstead, B. M., Sathian, K., Moore, A. B., Nalisnick, C., Stringer, A. Y. (2008). Explicit memory training leads to improved memory for face-name pairs in patients with mild cognitive impairment: Results of a pilot investigation. Journal of the International Neuropsychological Society, 14, 883889.Google Scholar
14 Hampstead, B. M., Sathian, K., Phillips, P. A., Amaraneni, A., Delaune, W. R., Stringer, A. Y. (2012). Mnemonic strategy training improves memory for object location associations in both healthy elderly and patients with amnestic mild cognitive impairment: A randomized, single blind study. Neuropsychology, 26(3), 385399.Google Scholar
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Amaraneni, A., Sathian, K. (2011). Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia, 49, 23492361.Google Scholar
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Deshpande, G., Hu, X. P., Moore, A. B., Sathian, K. (2011). Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: A pilot study. Neurorehabilitation and Neural Repair, 25, 210222.Google Scholar
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Giddens, M., Sathian, K. (2012). Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus, 22(8), 16521658.CrossRefGoogle ScholarPubMed
Hart, T., Fann, J. R., Novack, T. A. (2008). The dilemma of the control condition in experience-based cognitive and behavioural treatment research. Neuropsychological Rehabilitation, 18(1), 121.Google Scholar
Haskins, E. C., Cicerone, K., Darns-O'Connor, K. D., Eberle, R., Langenbahn, D., Shapiro-Ronsenbaum, A. (2012). Cognitive rehabilitation manual: Translating evidence-based recommendations into practice. Reston, VA: American Congress of Rehabilitation Medicine.Google Scholar
15 Herrera, C., Chambon, C., Michel, B. F., Paban, V., Alescio-Lautier, B. (2012). Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia, 20, 18711881.CrossRefGoogle Scholar
Huckans, M., Hutson, L., Twamley, E., Jak, A., Kaye, J., Storzbach, D. (2013). Efficacy of cognitive rehabilitation therapies for mild cognitive impairment (MCI) in older adults: Working toward a theoretical model and evidence-based interventions. Neuropsychological Review, 23, 6380.Google Scholar
Jack, C. R. (2012). Alzheimer's disease: New concepts on its neurobiology and the clinical role imaging will play. Radiology, 263(2), 344361.Google Scholar
Jean, L., Bergeron, M. -E., Thivierge, S., Simard, M. (2010). Cognitive intervention programs for individuals with mild cognitive impairment: Systematic review of the literature. The American Journal of Geriatric Psychiatry, 18(4), 281296.Google Scholar
16 Jean, L., Simard, M., van Reekum, R., Bergeron, M. -E. (2007). Towards a cognitive stimulation program using an errorless learning paradigm in amnestic mild cognitive impairment. Neuropsychiatric Disease and Treatment, 3(6), 975985.Google ScholarPubMed
17 Jean, L., Simard, M., Wiederkehr, S., Bergeron, M. -E., Turgeon, Y., Hudon, C., van Reekum, R. (2010). Efficacy of a cognitive training programme for mild cognitive impairment: Results of a randomised controlled study. Neuropsychological Rehabilitation, 20(3), 377405.Google Scholar
18 Joosten-Weyn Banning, L. W. A., Kessels, R. P., Rikkert, M. G. M. O., Geleijns-Lanting, C. E., Kraaimaat, F. W. (2008). A cognitive behavioral group therapy for patients diagnosed with mild cognitive impairment and their significant others: Feasibility and preliminary results. Clinical Rehabilitation, 22, 731740.Google Scholar
19 Joosten-Weyn Banningh, L. W. A., Prins, J. B., Vernooij-Dassen, J. F. J. M., Wijnen, H. H., Olde Rikkert, M. G. M., Kessels, R. P. C. (2010). Group therapy for patients with mild cognitive impairment and their significant others: Results of a waiting-list controlled trial. Gerontology, 57, 444454.Google Scholar
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155158.Google Scholar
Keuider, A. M., Parisi, J. M., Gross, A. L., Rebok, G. W. (2012). Computerized cognitive training with older adults: A systematic review. PLoS One, 7(7), e40588.Google Scholar
20 Kinsella, G. J., Mullaly, E., Rand, E., Ong, B., Burton, C., Price, S., Storey, E. (2009). Early intervention for mild cognitive impairment: A randomized controlled trial. Journal of Neurology, Neurosurgery, and Psychiatry, 80(7), 730736.Google Scholar
Kurtz, M. A. (2012). Cognitive remediation for schizophrenia: Current status, biological correlates and predictors of response. Expert Reviews Neurotherapy, 12(7), 813821.Google Scholar
21 Kurz, A., Pohl, C., Ramsenthaler, M., Sorg, C. (2009). Cognitive rehabilitation in patients with mild cognitive impairment. International Journal of Geriatric Psychiatry, 24, 163168.CrossRefGoogle ScholarPubMed
Li, H., Li, J., Li, N., Li, B., Wang, P., Zhou, T. (2011). Cognitive intervention for persons with mild cognitive impairment: A meta-analysis. Ageing Research Reviews, 10, 285296.Google Scholar
Loewenstein, D. A., Acevedo, A., Agron, J., Duara, R. (2007). Stability of neurocognitive impairment in different subtypes of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23, 8286.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Acevedo, A., Agron, J., Martinez, G., Duara, R. (2007). The use of amnestic and nonamnestic composite measures at different thresholds in the neuropsychological diagnosis of MCI. Journal of Clinical and Experimental Neuropsychology, 29, 300307.CrossRefGoogle ScholarPubMed
Loewenstein, D. A., Acevedo, A., Small, B. J., Agron, J., Crocco, E., Duara, R. (2009). Stability of different subtypes of mild cognitive impairment among the elderly over a 2- to 3- year follow-up period. Dementia and Geriatric Cognitive Disorders, 27, 418423.Google Scholar
22 Londos, E., Boschian, K., Linden, A., Persson, C., Minthon, L., Lexell, J. (2008). Effects of a goal-oriented rehabilitation program in mild cognitive impairment: A pilot study. American Journal of Alzheimer's Disease and Other Dementias, 23, 177183.Google Scholar
Lundqvist, A., Grundstrom, K., Samuelsson, K., Ronnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 11731183.Google Scholar
Manly, J. J., Tang, M. X., Schupf, N., Stern, Y., Vonsattel, J. P. G., Mayeux, R. (2008). Frequency and course of mild cognitive impairment in a multiethnic community. Annals of Neurology, 63(4), 494506.CrossRefGoogle Scholar
Martin, M., Clare, L., Altgassen, A. M., Cameron, M. H., Zehnder, F. (2011). Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database of Systematic Reviews, 19(1), 151.Google Scholar
23 Moro, V., Condoleo, M. T., Sala, F., Pernigo, S., Moretto, M. D., Gambina, G. (2012). Cognitive stimulation in a-MCI: An experimental study. American Journal of Alzheimer's Disease & Other Dementias, 27(2), 1210130.CrossRefGoogle ScholarPubMed
24 Ng, S., Lo, A., Lee, G., Lam, M., Yeong, E., Koo, M., Lau, V. (2006). Report of the outcomes of occupational therapy programmes for elderly persons with mild cognitive impairment (MCI) in community elderly centres. Hong Kong Journal of Occupational Therapy, 16, 1622.Google Scholar
25 Olazaran, J., Muniz, R., Reisberg, B., Pena-Casanova, J., del Ser, T., Cruz-Jentoft, A. J., Sevilla, C. (2004). Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer's disease. Neurology, 63, 23482353.Google Scholar
26 Olchik, M. R., Farina, J., Steibel, N., Teixeira, A. R., Yassuda, M. S. (2013). Memory training (MT) in mild cognitive impairment (MCI) generates change in cognitive performance. Archives of Gerontology and Geriatrics, 56, 442447.Google Scholar
Oswald., W. D., Rupprecht, R., Cunzelmann, T., Tritt, K. (1996). The SIMA-project: Effects of 1 year cognitive and psychomotor training on cognitive abilities of the elderly. Behavioural Brain Research, 78, 6772.Google Scholar
Owen, A. M., Hampshire, A., Grahn, J. A., Dajani, S., Burns, A. S., Howard, R. J., Ballard, C. G. (2010). Putting brain training to the test. Nature, 465(7299), 775778.Google Scholar
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of International Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., Kokmen, E. (1999). Mild cognitive impairment – clinical characterization and outcome. Archives of Neurology, 56, 303308.Google Scholar
27 Poon, P., Hui, E., Dai, D., Kwok, T., Woo, J. (2005). Cognitive intervention for community-dwelling older persons with memory problems: Telemedicine versus face-to-face treatment. International Journal of Geriatric Psychiatry, 20, 285286.Google Scholar
Rabin, L. A., Pare, N., Saykin, A. J., Brown, M. J., Wishart, H. A., Flashman, L. A., Santulli, R. B. (2009). Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer's disease. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16(3), 357376.Google Scholar
28 Rapp, S., Brenes, G., Marsh, A. P. (2002). Memory enhancement training for older adults with mild cognitive impairment: A preliminary study. Aging & Mental Health, 6(1), 511.Google Scholar
Raschetti, R., Albanese, E., Vanacore, N., Maggini, M. (2007). Cholinesterase inhibitors in mild cognitive impairment: A systematic review of randomised trials. PLos Medicine, 4(11), 18181828.Google Scholar
Reijnders, J., van Heugten, C., van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Research Reviews, 12, 263275.Google Scholar
Rey, A. (1941). L'examen psychologique dans les cas d'ence′phalopathie traumatique. Archives de Psychologie, 28, 21.Google Scholar
Rey, A. (1964). L ‘examen clinique en psychologie [Clinical tests in psychology]. Paris: Presses Universitaires de France.Google Scholar
Rohling, M. L., Faust, M. E., Beverly, B., Demakis, G. (2009). Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al. 's (2000, 2005) systematic reviews. Neuropsychology, 23(1), 2039.Google Scholar
29 Rosen, A. C., Sugiura, L., Kramer, J. H., Whitfield-Gabrieli, S., Gabrieli, J. D. (2011). Cognitive training changes hippocampal function in mild cognitive impairment: A pilot study. Journal of Alzheimer's Disease, 26, 349357.CrossRefGoogle ScholarPubMed
30 Rozzini, L., Costardi, D., Chilovi, B. V., Trabucchi, M., Padovani, A. (2007). Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. International Journal of Geriatric Psychiatry, 22, 356360.Google Scholar
Ruff, R. M. (2003). A friendly critique of neuropsychology: Facing the challenges of our future. Archives of Clinical Neuropsychology, 18, 847864.Google Scholar
Sitzer, D. I., Twamley, E. W., Jeste, D. V. (2006). Cognitive training in Alzheimer's disease: A meta-analysis of the literature. Acta Psychiatrica Scandinavica, 114, 7590.Google Scholar
Small, J. A. (2012). A new frontier in spaced retrieval memory training for persons with Alzheimer's disease. Neuropsychological Rehabilitation, 22(3), 329361.Google Scholar
Simon, S. S., Yokomizo, J. E., Bottino, C. M. C. (2012). Cognitive intervention in amnestic mild cognitive impairment: A sustematic review. Neuroscience and Biobehavioral Reviews, 36, 11631178.Google Scholar
Smith, G. E., Pankratz, V. S., Negash, S., Machulda, M. M., Petersen, R. C., Boeve, B. F., Ivnik, R. J. (2007). A plateau in pre-Alzheimer's memory decline: Evidence for compensatory mechanisms? Neurology, 69, 133139.Google Scholar
Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Annals of the New York Academy of Sciences, 1097, 146155.Google Scholar
Sperling, R. A., Johnson, K. A., Daoraiswamy, P. M., Reiman, E. M., Fleisher, A. S., Sabbagh, M. N., Pontecorvo, M. J. (2013). Amyloid deposition detected with florbetapir F 18 (F-18-AV-45) is related to lower episodic memory performance in clinically normal older individuals. Neurobiology of Aging, 34(3), 822831.Google Scholar
Strauss, E., Sherman, E. M. S., Spreen, O. (2006). A compendium of neuropsychological tests. New York: Oxford University Press.Google Scholar
Stott, J., Spector, A. (2011). A review of the effectiveness of memory interventions in mild cognitive impairment (MCI). International Psychogeriatrics, 23(4), 526538.Google Scholar
Stringer, A. Y. (2007). Ecologically oriented neurorehabilitation of memory therapist manual. Los Angeles: Western Psychological Services.Google Scholar
Stringer, A. Y. (2011). Ecologically-oriented neurorehabilitation of memory: Robustness of outcome across diagnosis and severity. Brain Injury, 25(2), 169178.Google Scholar
31 Talassi, E., Guerreschi, M., Feriani, M., Fedi, V., Bianchetti, A., Trabucchi, M. (2007). Effectiveness of a cognitive rehabilitation program in mild dementia (MD) and mild cognitive impairment (MCI): A case control study. Archives of Gerontology and Geriatrics, 44(Suppl. 1), 391399.Google Scholar
Teng, W., Tingus, K. D., Lu, P. H., Cummings, J. L. (2009). Persistence of neuropsychological testing deficits in mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 28, 168178.Google Scholar
32 Troyer, A. K., Murphy, K. J., Anderson, N. D., Moscovitch, M., Craik, F. I. M. (2008). Changing everyday memory behaviour in amnestic mild cognitive impairment: A randomised controlled trial. Neuropsychological Rehabilitation, 18(1), 6588.Google Scholar
Troyer, A. K., Rich, J. B. (2002). Psychometric properties of a new metamemory questionnaire for older adults. The Journals of Gerontology Series B—Psychological Sciences and Social Sciences, 57(1), 1927.Google Scholar
33 Tsolaki, M., Kounti, F., Agogiatou, C., Poptsi, E., Bakoglidou, E., Zafeiropoulou, M., Vasiloglou, M. (2011). Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neurodegenerative Diseases, 8(3), 138145.Google Scholar
34 Unverzagt, F. W., Kasten, L., Johnson, K. E., Rebok, G. W., Marsiske, M., Koepke, K. M., Tennstedt, S. L. (2007). Effect of memory impairment on training outcomes in ACTIVE. Journal of the International Neuropsychological Society, 13, 953960.Google Scholar
Verhaeghen, P., Marcoen, A., Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychology and Aging, 7, 242251.Google Scholar
35 Wagner, S., Kaschel, R., Paulsenm, S., Bleichner, F., Knickenberg, R. J., Beutel, M. E. (2008). Does a cognitive-training programme improve the performance of middle-aged employees undergoing in-patient psychosomatic treatment? Disability and Rehabilitation, 30(23), 17861793.Google Scholar
36 Wenisch, E., Cantegreil-Kallen, I., De Rotrou, J., Garrigue, P., Moulin, F., Batouche, F., Rigaud, A. S. (2007). Cognitive stimulation intervention for elders with mild cognitive impairment compared with normal aged subjects: Preliminary results. Aging Clinical and Experimental Research, 19, 316322.Google Scholar
Wester, A. J., Leenders, P., Egger, J. I. M., Kessels, R. P. (2013). Ceiling and floor effects on the Rivermead Behavioural Memory Test in patients with alcohol-related memory disorders and healthy participants. International Journal of Psychiatry in Clinical Practice, 17, 286291.Google Scholar
Whyte, J., Gordon, W., Gonzalez Rothi, L. J. (2009). A phased developmental approach to neurorehabilitation research: The science of knowledge building. Archives of Physical Medicine and Rehabilitation, 90(11 Suppl. 1), S3S10.Google Scholar
Willis, S. L., Tennstedt, S. L., Marsiske, M., Elias, J., Koepke, K. M., Morris, J. N., Wright, E. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 28052814.Google Scholar
Wills, P., Clare, L., Shiel, A., Wilson, B. (2000). Assessing subtle memory impairments in the everday memory performnace of brain injured people: Exploring the potential of the Extended Rivermean Behavioural Memory Test. Brain Injury, 14(8), 693704.Google Scholar
Wilson, B. (2009). Memory rehabilitation integrating theory and practice. NewYork: Guilford Press.Google Scholar
Wilson, B., Cockburn, J., Baddeley, A., Hiorns, R. (1989). The development and validation of a test battery for detecting and monitoring everyday memory problems. Journal of Clinical and Experimental Neuropsychology, 11(6), 855870.Google Scholar
Wilson, B. A., Clare, L., Baddeley, A. D., Cockburn, J., Watson, P., Tate, R. (1998). The Rivermead Behavioural Memory Test – Extended version. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Wilson, B. A., Greenfield, E., Clare, L., Baddeley, A., Cockburn, J., Watson, P., Nannery, R. (2008). The Rivermead Behavioural Memory Test – Third Edition (RBMT-3). London, UK: Pearson Assessment; 2008.Google Scholar
Winblad, B. I., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Petersen, R. C. (2004). Mild cognitive impairment — beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246.Google Scholar
Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. Journal of the American Medical Association, 296(17), 20952104.Google Scholar
Wolf, S. L., Winstein, C. J., Miller, J. P., Thompson, P. A., Taub, E., Uswatte, G., Nichols-Larsen, D. (2008). The EXCITE trial: Retention of improved upper extremity function among stroke survivors receiving CI movement therapy. Lancet Neurology, 7(1), 3340.CrossRefGoogle Scholar
Supplementary material: File

Hampstead et al. Supplementary Material

Table 1

Download Hampstead et al. Supplementary Material(File)
File 40.7 KB