Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:41:03.689Z Has data issue: false hasContentIssue false

Cognitive reserve moderates decline in information processing speed in multiple sclerosis patients

Published online by Cambridge University Press:  08 July 2010

RALPH H.B. BENEDICT*
Affiliation:
Department of Neurology, Division of Cognitive and Behavioral Neurosciences, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York Jacobs Neurological Institute, Buffalo, New York
SARAH A. MORROW
Affiliation:
Department of Neurology, Division of Cognitive and Behavioral Neurosciences, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York Jacobs Neurological Institute, Buffalo, New York
BIANCA WEINSTOCK GUTTMAN
Affiliation:
Department of Neurology, Division of Cognitive and Behavioral Neurosciences, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York Jacobs Neurological Institute, Buffalo, New York
DIANE COOKFAIR
Affiliation:
Department of Neurology, Division of Cognitive and Behavioral Neurosciences, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York Jacobs Neurological Institute, Buffalo, New York
DAVID J. SCHRETLEN
Affiliation:
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
*
*Correspondence and reprint requests to: Ralph H.B. Benedict, Department of Neurology, 100 High Street (D-6), Buffalo, New York 14203. E-mail: benedict@buffalo.edu

Abstract

Cognitive reserve is widely recognized as a moderator of cognitive decline in patients with senile dementias such as Alzheimer’s disease. The same effect may occur in multiple sclerosis (MS), an immunologic disorder affecting the central nervous system. While MS is traditionally considered an inflammatory, white matter disease, degeneration of gray matter is increasingly recognized as the primary contributor to progressive cognitive decline. Our aim was to determine if individual differences in estimated cognitive reserve protect against the progression of cognitive dysfunction in MS. Ninety-one patients assessed twice roughly 5 years apart were identified retrospectively. Cognitive testing emphasized mental processing speed. Cognitive reserve was estimated by years of education and by performance on the North American Adult Reading Test (NAART). After controlling for baseline characteristics, both years of education (p = .013) and NAART scores (p = .049) significantly improved regression models predicting cognitive decline. Symbol Digit Modalities Test (SDMT) performance showed no significant change in patients with > 14 years of education, whereas it declined significantly in patients with ≤ 14 years of education. We conclude that greater cognitive reserve as indexed by either higher premorbid intelligence or more years of education protects against the progression of cognitive dysfunction in MS. (JINS, 2010, 16, 829–835.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, S.M., & Teresi, J.A. (1999). Reading ability, education, and cognitive status assessment among older adults in Harlem, New York City. American Journal of Public Health, 89, 9597.CrossRefGoogle ScholarPubMed
Alexander, G.E., Furey, M.L., Grady, C.L., Pietrini, P., Brady, D.R., Mentis, M.J., et al. . (1997). Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: Implications for the cognitive reserve hypothesis. American Journal of Psychiatry, 154, 165172.Google ScholarPubMed
Amato, M.P., Bartolozzi, M.L., Zipoli, V., Portaccio, E., Mortilla, M., Guidi, L., et al. . (2004). Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology, 63, 8993.CrossRefGoogle ScholarPubMed
Amato, M.P., Ponziani, G., Siracusa, G., & Sorbi, S. (2001). Cognitive dysfunction in early-onset multiple sclerosis: A reappraisal after 10 years. Archives of Neurology, 58, 16021606.CrossRefGoogle ScholarPubMed
APA. (2000). Diagnostic and statistical manual of mental disorders, fourth edition, text revision. Washington DC: American Psychiatric Association.Google Scholar
Benedict, R.H.B., Bruce, J.M., Dwyer, M.G., Abdelrahman, N., Hussein, S., Weinstock-Guttman, B., et al. . (2006). Neocortical atrophy, third ventricular width, and cognitive dysfunciton in multiple sclerosis. Archives of Neurology, 63, 13011306.CrossRefGoogle Scholar
Benedict, R.H.B., Cookfair, D., Gavett, R., Gunther, M., Munschauer, F., Garg, N., et al. . (2006). Validity of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 12, 549558.Google Scholar
Benedict, R.H.B., Fischer, J.S., Archibald, C.J., Arnett, P.A., Beatty, W.W., Bobholz, J., et al. . (2002). Minimal Neuropsychological Assessment of MS Patients: A Consensus Approach. Clinical Neuropsychologist, 16, 381397.CrossRefGoogle ScholarPubMed
Benedict, R.H.B., Ramasamy, D., Munschauer, F., Weinstock-Guttman, B., & Zivadinov, R. (2009). Memory impairment in multiple sclerosis: Correlation with deep grey matter and mesial temporal atrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 80, 201206.Google Scholar
Benedict, R.H.B., Weinstock-Guttman, B., Fishman, I., Sharma, J., Tjoa, C.W., & Bakshi, R. (2004). Prediction of neuropsychological impairment in multiple sclerosis: Comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Archives of Neurology, 61, 226230.CrossRefGoogle ScholarPubMed
Blair, J.R., & Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. Clinical Neuropsychologist, 3, 129136.CrossRefGoogle Scholar
Bo, L., Vedeler, C.A., Nyland, H., Trapp, B.D., & Mork, S.J. (2003a). Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Multiple Sclerosis, 9, 323331.CrossRefGoogle Scholar
Bo, L., Vedeler, C.A., Nyland, H.I., Trapp, B.D., & Mork, S.J. (2003b). Subpial demyelination in the cerebral cortex of multiple sclerosis patients. Journal of Neuropathology and Experimental Neurology, 62, 723732.CrossRefGoogle ScholarPubMed
Bobholz, J.A., & Rao, S.M. (2003). Cognitive dysfunction in multiple sclerosis: A review of recent developments. Current Opinion in Neurology, 16, 283288.CrossRefGoogle ScholarPubMed
Borroni, B., Premi, E., Agosti, C., Alberici, A., Garibotto, V., Bellelli, G., et al. . (2009). Revisiting brain reserve hypothesis in frontotemporal dementia: Evidence from a brain perfusion study. Dementia and Geriatric Cognitive Disorders, 28, 130135.Google Scholar
Chiaravalloti, N.D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7, 11391151.CrossRefGoogle ScholarPubMed
Christodoulou, C., Krupp, L.B., Liang, Z., Huang, W., Melville, P., Roque, C., et al. . (2003). Cognitive performance and MR markers of cerebral injury in cognitively impaired MS patients. Neurology, 60, 17931798.Google Scholar
Cutter, G.R., Baier, M.L., Rudick, R.A., Cookfair, D.L., Fischer, J.S., Petkau, J., et al. . (1999). Development of a multiple sclerosis funcitonal composite as a clinical trial outcome measure. Brain, 122, 871882.CrossRefGoogle Scholar
Dal Bianco, A., Bradl, M., Frischer, J., Kutzelnigg, A., Jellinger, K., & Lassmann, H. (2008). Multiple sclerosis and Alzheimer’s disease. Annals of Neurology, 63, 174183.CrossRefGoogle ScholarPubMed
Dufouil, C., Alperovitch, A., & Tzourio, C. (2003). Influence of education on the relationship between white matter lesions and cognition. Neurology, 60, 831836.Google Scholar
Elkins, J.S., Longstreth, W.T. Jr., Manolio, T.A., Newman, A.B., Bhadelia, R.A., & Johnston, S.C. (2006). Education and the cognitive decline associated with MRI-defined brain infarct. Neurology, 67, 435440.CrossRefGoogle ScholarPubMed
Friend, K.B., & Grattan, L. (2000). Use of the North American Adult Reading Test to estimate premorbid intellectual function in patients with multiple sclerosis. Journal of Clinical & Experimental Neuropsychology, 20, 846851.CrossRefGoogle Scholar
Glatt, S.L., Hubble, J.P., Lyons, K., Paolo, A., Troster, A.I., Hassanein, R.E., et al. . (1996). Risk factors for dementia in Parkinson’s disease: Effect of education. Neuroepidemiology, 15, 2025.Google Scholar
Gronwall, D.M.A. (1977). Paced auditory serial addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44, 367373.CrossRefGoogle ScholarPubMed
Houtchens, M.K., Benedict, R.H.B., Killiany, R., Sharma, J., Jaisani, Z., Singh, B., et al. . (2007). Thalamic atrophy and cognition in multiple sclerosis. Neurology, 69, 113123.Google Scholar
Jacobs, D., Sano, M., Marder, K., Bell, K., Bylsma, F., Lafleche, G., et al. . (1994). Age at onset of Alzheimer’s disease: Relation to pattern of cognitive dysfunction and rate of decline. Neurology, 44, 12151220.CrossRefGoogle ScholarPubMed
Jacobs, L.D., Wende, K.E., Brownscheidle, C.M., Apatoff, B., Coyle, P.K., Goodman, A., et al. . (1999). A profile of multiple sclerosis: The New York State Multiple Sclerosis Consortium. Multiple Sclerosis, 5, 369376.CrossRefGoogle ScholarPubMed
Kujala, P., Portin, R., & Ruutiainen, J. (1997). The progress of cognitive decline in multiple sclerosis. Brain, 120, 289297.CrossRefGoogle ScholarPubMed
Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Annals of Neurology, 13, 227231.Google Scholar
Lynn, R., & Mikk, J. (2007). National differences in intelligence and educational attainment. Intelligence, 35, 115121.Google Scholar
McCarthy, F.M., Sellers, A.H., & Burns, W.J. (2003). Prediction of IQ in the Mayo older adult normative sample using multiple methods. Journal of Clinical Psychology, 59, 457463.Google Scholar
Parmenter, B.A., Testa, S.M., Schretlen, D.J., Weinstock-Guttman, B., & Benedict, R.H.B. (2010). The utility of regression-based norms in interpreting the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 16, 616.CrossRefGoogle ScholarPubMed
Parmenter, B.A., Weinstock-Guttman, B., Garg, N., Munschauer, F., & Benedict, R.H.B. (2007). Screening for cognitive impairment in MS using the Symbol Digit Modalities Test. Multiple Sclerosis, 13, 5257.Google Scholar
Parmenter, B.A., Zivadinov, R., Kerenyi, L., Gavett, R., Weinstock-Guttman, B., Dwyer, M., et al. . (2007). Validity of the Wisconsin Card Sorting and Delis-Kaplan Executive Function System (DKEFS) Sorting Tests in Multiple Sclerosis. Journal of Clinical & Experimental Neuropsychology, 29, 215223.CrossRefGoogle ScholarPubMed
Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P., Kappos, L., et al. . (2005). Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. [Review]. Annals of Neurology, 58, 840846.Google Scholar
Rao, S.M. (1991a). A manual for the brief, repeatable battery of neuropsychological tests in multiple sclerosis. New York, NY: National Multiple Sclerosis Society.Google Scholar
Rao, S.M. (1991b). Neuropsychological screening battery for multiple sclerosis. New York, NY: National Multiple Sclerosis Society.Google ScholarPubMed
Rao, S.M., Leo, G.J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41, 685691.CrossRefGoogle ScholarPubMed
Roe, C.M., Xiong, C., Miller, J.P., & Morris, J.C. (2007). Education and Alzheimer disease without dementia: Support for the cognitive reserve hypothesis. Neurology, 68, 223228.CrossRefGoogle ScholarPubMed
Ropacki, M.T., & Elias, J.W. (2003). Preliminary examination of cognitive reserve theory in closed head injury. Archives of Clinical Neuropsychology, 18, 643654.CrossRefGoogle ScholarPubMed
Rudick, R.A., Cutter, G., Baier, M., Fisher, E., Dougherty, D., Weinstock-Guttman, B., et al. . (2001). Use of the multiple sclerosis functional composite to predict disability in relapsing MS. Neurology, 56, 13241330.Google Scholar
Sanfilipo, M.P., Benedict, R.H.B., Weinstock-Guttman, B., & Bakshi, R. (2006). Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology, 66, 685692.CrossRefGoogle ScholarPubMed
Satz, P., Morgenstern, H., Miller, E.N., Selnes, O.A., McArthur, J.C., Cohen, B.A., et al. . (1993). Low education as a possible risk factor for cognitive abnormalities in HIV-1: Findings from the multicenter AIDS Cohort Study (MACS). Journal of Acquired Immune Deficiency Syndromes, 6, 503511.Google Scholar
Smith, A. (1982). Symbol digit modalities test: Manual. Los Angeles: Western Psychological Services.Google Scholar
Sperling, R.A., Guttmann, C.R., Hohol, M.J., Warfield, S.K., Jakab, M., Parente, M., et al. . (2001). Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: A longitudinal study. Archives of Neurology, 58, 115121.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448460.Google Scholar
Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(Suppl. 2), S69S74.CrossRefGoogle ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028.CrossRefGoogle ScholarPubMed
Stern, Y., Gurland, B., Tatemichi, T.K., Tang, M.X., Wilder, D., & Mayeux, R. (1994). Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA, 271, 10041010.Google Scholar
Strober, L., Englert, J., Munschauer, F., Weinstock-Guttman, B., Rao, S., & Benedict, R.H.B. (2009). Sensitivity of conventional memory tests in multiple sclerosis: Comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Multiple Sclerosis, 15, 10771084.Google Scholar
Sumowski, J.F., Chiaravalloti, N., Wylie, G., & Deluca, J. (2009). Cognitive reserve moderates the negative effect of brain atrophy on cognitive effi ciency in multiple sclerosis. Journal of the International Neuropsychological Society, 15, 606612.Google Scholar
Sumowski, J.F., Wylie, G.R., Deluca, J., & Chiaravalloti, N. (2010). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: Functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133(Pt 2), 362374.Google Scholar
Tabert, M.H., Albert, S.M., Borukhova-Milov, L., Camacho, Y., Pelton, G., Liu, X., et al. . (2002). Functional deficits in patients with mild cognitive impairment: Prediction of AD. Neurology, 58, 758764.Google Scholar
Tekok-Kilic, A., Benedict, R.H.B., Weinstock-Guttman, B., Dwyer, M., Carone, D., Srinivasaraghavan, B., et al. . (2007). Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. Neuroimage, 36, 12941300.CrossRefGoogle ScholarPubMed
Trapp, B.D., & Nave, K.A. (2008). Multiple sclerosis: An immune or neurodegenerative disorder? Annual Review of Neuroscience, 31, 247269.CrossRefGoogle ScholarPubMed
Yeh, E.A., Weinstock-Guttman, B., Ramanathan, M., Ramasamy, D.P., Willis, L., Cox, J.L., et al. . (2009). Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain, 132(Pt 12), 33923400.Google Scholar
Zivadinov, R., Sepcic, J., Nasuelli, D., De Masi, R., Bragadin, L.M., Tommasi, M.A., et al. . (2001). A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery, & Psychiatry, 70, 773780.Google Scholar