Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:13:44.885Z Has data issue: false hasContentIssue false

Differential Influence of 5-HTTLPR - Polymorphism and COMT Val158Met - Polymorphism on Emotion Perception and Regulation in Healthy Women

Published online by Cambridge University Press:  31 March 2014

Elisabeth M. Weiss*
Affiliation:
Department of Psychology, Biological Psychology Unit, University of Graz, Austria
H. Harald Freudenthaler
Affiliation:
Department of Psychology, Biological Psychology Unit, University of Graz, Austria
Andreas Fink
Affiliation:
Department of Psychology, Biological Psychology Unit, University of Graz, Austria
Eva M. Reiser
Affiliation:
Department of Psychology, Biological Psychology Unit, University of Graz, Austria
Harald Niederstätter
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
Simone Nagl
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
Walther Parson
Affiliation:
Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria Penn State Eberly College of Science, University Park, Pennsylvania
Ilona Papousek
Affiliation:
Department of Psychology, Biological Psychology Unit, University of Graz, Austria
*
Correspondence and reprint requests to: Elisabeth M. Weiss, University of Graz, Department of Psychology, Univ.-Platz 2, A-8010 Graz, Austria. E-mail: e.weiss@uni-graz.at.

Abstract

Converging evidence indicates that a considerable amount of variance in self-estimated emotional competency can be directly attributed to genetic factors. The current study examined the associations between the polymorphisms of the Catechol-O-methyltransferase (COMT Met158Val) and the serotonin transporter (5-HTTLPR) and specific measures of the self-estimated effectiveness of an individual’s emotion perception and regulation. Emotional competence was measured in a large sample of 289 healthy women by using the Self-report Emotional Ability Scale (SEAS), which includes two subscales for the assessment of emotion perception and regulation in the intra-personal domain and two subscales for the assessment of emotion perception and regulation in the inter-personal domain. Participants’ reports of effective emotion regulation in everyday life were associated with the COMT Met-allele, with women homozygous for the Val-allele scoring lowest on this scale. Self-estimated effectiveness of emotion perception of the individual’s own emotions was related to the 5-HTTLPR. Both homozygous groups (s/s and l/l) rated their intra-personal emotion perception less effective than participants in the heterozygous s/l group. Taken together, the results indicate that genetic variants of the COMT and 5HTTLPR genes are differentially associated with specific measures of the self-estimated effectiveness of an individual’s emotion perception and regulation in the intra-personal domain. (JINS, 2014, 20, 1–9)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstadter, A.B., Daughters, S.B., Macpherson, L., Reynolds, E.K., Danielson, C.K., Wang, F., … Lejuez, C.W. (2012). Genetic associations with performance on a behavioral measure of distress intolerance. Journal of Psychiatric Research, 46, 8794. doi:10.1016/j.jpsychires.2011.09.017CrossRefGoogle ScholarPubMed
Antypa, N., Cerit, H., Kruijt, A.W., Verhoeven, F.E., & Van der Does, A.J. (2011). Relationships among 5-HTT genotype, life events and gender in the recognition of facial emotions. Neuroscience, 172, 303313. doi:10.1016/j.neuroscience.2010.10.042CrossRefGoogle ScholarPubMed
Antypa, N., Drago, A., & Serretti, A. (2013). The role of COMT gene variants in depression: Bridging neuropsychological, behavioral and clinical phenotypes. Neuroscience & Biobehavioral Reviews., Sep, 37(8), 15971610. doi:10.1016/j.neubiorev.2013.06.006Google Scholar
Bamonti, P.M., Heisel, M.J., Topciu, R.A., Franus, N., Talbot, N.L., & Duberstein, P.R. (2010). Association of alexithymia and depression symptom severity in adults aged 50 years and older. American Journal of Geriatric Psychiatry, 18, 5156. doi:10.1097/JGP.0b013e3181bd1bfeGoogle Scholar
Bar-On, R., Brown, J.M., Kircaldy, B.D., & Thomé, E.P. (2000). Emotional expression and implications for occupational stress: An application of the Emotional Quotient Inventory. Personality and Individual Differences, 28, 11071118. doi:10.1016/S0191-8869(99)00160-9Google Scholar
Brackett, M.A., & Mayer, J.D. (2003). Convergent, discriminant and incremental validity of competing measures of emotional intelligence. Personality and Social Psychology Bulletin, 29, 11471158. doi:10.1177/0146167203254596Google Scholar
Bruder, G., Keilp, J., Xu, H., Shikman, M., Schori, E., Gorman, J., & Gilliam, T.C. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58, 901907. doi:10.1016/j.biopsych.2005.05.010Google Scholar
Brummett, B.H., Boyle, S.H., Siegler, I.C., Kuhn, C.M., Ashley-Koch, A., Jonassaint, C.R., … Williams, R.B. (2008). Effects of environmental stress and gender on associations among symptoms of depression and the serotonin transporter gene linked polymorphic region (5-HTTLPR). Behavior Genetics, 38, 3443. doi:10.1007/s10519-007-9172-1Google Scholar
Canli, T., Ferri, J., & Duman, E.A. (2009). Genetics of emotion regulation. Neuroscience, 164, 4354., doi:10.1016/j.neuroscience.2009.06.049CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T.E., Taylor, A., Craig, I.W., Harrington, H., & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389. doi:10.1126/science.1083968Google Scholar
Chen, J., Lipska, B.K., Halim, M., Ma, Q.D., Matsumoto, M., Melhem, S., … Weinberger, D.R. (2004). Functional analysis of genetic variation in catechol-O-metyltranserase (COMT): Effects on mRNA, protein, and enzyme activity in post mortem human brain. The American Journal of Human Genetics, 75, 807821. doi:10.1086/425589CrossRefGoogle Scholar
Chiao, J.Y., & Blizinsky, K.D. (2010). Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene (5-HTTLPR). Proceedings of the Royal Society B: Biological Sciences, 277, 529537. doi:10.1098/rspb.2009.1650Google Scholar
Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: A quantitative review of 30 years of investigations. Psychological Bulletin, 134, 829885. doi:10.1037/a0013342CrossRefGoogle ScholarPubMed
Dawda, D., & Hart, S.D. (2000). Assessing emotional intelligence: Reliability and validity of the Bar-On Emotional Quotient Inventory (EQ-i) in university students. Personality and Individual Differences, 28, 797812. doi:10.1016/S0191-8869(99)00139-7Google Scholar
Day, A.L., & Carroll, S.A. (2004). Using an ability-based measure of emotional intelligence to predict individual performance, group performance, and group citizenship behaviours. Personality and Individual Differences, 36, 14431458. doi:10.1016/S0191-8869(03)00240-XGoogle Scholar
de Frias, C.M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L.G. (2004). COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behavior Genetics, 34, 533539. doi:10.1023/B:BEGE.0000038491.06972.8cCrossRefGoogle ScholarPubMed
Decety, J., & Sommerville, J.A. (2003). Shared representations between self and other: A social cognitive neuroscience view. Trends in Cognitive Sciences, 7, 527533. doi:10.1016/j.tics.2003.10.004Google Scholar
Declerck, C.H., Boone, C., & De Brabander, B.D. (2006). On feeling in control: A biological theory for individual differences in control perception. Brain and Cognition, 62, 143176. doi:10.1016/j.bandc.2006.04.004Google Scholar
Defrancesco, M., Niederstätter, H., Parson, W., Oberacher, H., Hinterhuber, H., Canazei, M., … Marksteiner, J. (2011). Influence of serotonin transporter genotype and Catechol-O-Methyltransferase Val158Met polymorphism on recognition of emotional faces. Journal of the International Neuropsychological Society, 17, 10141020. doi:10.1017/S135561771100097XCrossRefGoogle ScholarPubMed
DeYoung, C.G., & Clark, R. (2012). The gene in its natural habitat: The importance of gene-trait interactions. Developmental Psychopathology, 24(4), 13071318. doi:10.1017/S0954579412000727CrossRefGoogle ScholarPubMed
Diaz-Asper, C.M., Goldberg, T.E., Kolachana, B.S., Straub, R.E., Egan, M.F., & Weinberger, D.R. (2008). Genetic variation in catechol-O-metyltransferase: Effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biological Psychiatry, 63, 7279. doi:10.1016/j.biopsych.2007.03.031Google Scholar
Drabant, E.M., Hariri, A.R., Meyer-Lindenberg, A., Munoz, K.E., Mattay, V.S., Kolachana, B.S., … Weinberger, D.R. (2006). Catechol-O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63, 13961406. doi:10.1001/archpsyc.63.12.1396CrossRefGoogle ScholarPubMed
Ducci, F., & Goldman, D. (2008). Genetic approaches to addiction: Genes and alcohol. Addiction, 103, 14141428. doi:10.1111/j.1360-0443.2008.02203.xCrossRefGoogle ScholarPubMed
Enoch, M.-A., Schuckit, M.A., Johnson, B.A., & Goldman, D. (2003). Genetics of alcoholism using intermediate phenotypes. Alcoholism: Clinical and Experimental Research, 27, 169176. doi:10.1097/01.ALC.0000052702.77807.8CCrossRefGoogle ScholarPubMed
Extremera, N., Durán, A., & Rey, L. (2007). Perceived emotional intelligence and dispositional optimism-pessimism: Analyzing their role in predicting psychological adjustment among adolescents. Personality and Individual Differences, 42, 10691079. doi:10.1016/j.paid.2006.09.014Google Scholar
Freudenthaler, H.H., & Neubauer, A.C. (2005). Emotional intelligence: The convergent and discriminant validities of intra- and interpersonal emotional abilities. Personality and Individual Differences, 39, 569579. doi:10.1016/j.paid.2005.02.004Google Scholar
Freudenthaler, H.H., Neubauer, A.C., & Haller, U. (2008). Emotional intelligence: Instruction effects and sex differences in emotional management abilities. Journal of Individual Differences, 29, 105115. doi:10.1027/1614-0001.29.2.105Google Scholar
Freudenthaler, H.H., & Papousek, I. (2013). The typical and maximum performance of intra- and interpersonal emotion management. In C. Mohiyeddini (Ed.), Emotional relationships: Types, challenges, and physical/mental health impacts. Hauppauge, NY: Nova Science Publishers.Google Scholar
Gohm, C.L. (2004). Moving forward with emotional intelligence. Psychological Inquiry, 15, 222227. 10.1207/s15327965pli1503_03Google Scholar
Goldberg, T.E., Egan, M.F., Gscheidle, T., Coppola, R., Weickert, T., Kolachana, B.S., … Weinberger, D.R. (2003). Executive subprocesses in working memory: Relationship to catechol-O-methyltransferase Val168Met genotype and schizophrenia. Archives of General Psychiatry, 60, 889896. doi:10.1001/archpsyc.60.9.889Google Scholar
Grossmann, T., Johnson, M.H., Vaish, A., Hughes, D.A., Quinque, D., Stoneking, M., & Friederici, A.D. (2011). Genetic and neural dissociation of individual responses to emotional expressions in human infants. Developmental Cognitive Neuroscience, 1, 5766. doi:10.1016/j.dcn.2010.07.001Google Scholar
Gyurak, A., Haase, C.M., Sze, J., Goodkind, M.S., Coppola, G., Lane, J., & Miller, B.L. (2013). The effect of the serotonin transporter polymorphism (5-HTTLPR) on empathic and self-conscious emotional reactivity. Emotion, 13, 2535. doi:10.1037/a0029616Google Scholar
Harrison, P.J., & Tunbridge, E.M. (2008). Catechol-O-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology, 33, 30373045. doi:10.1038/sj.npp.1301543Google Scholar
Hennings, A., Zill, P., & Rief, W. (2009). Serotonin transporter gene promoter polymorphism and somatoform symptoms. Journal of Clinical Psychiatry, 70, 15361539. doi:10.4088/JCP.08m04613Google Scholar
Homberg, J.R., & Lesch, K.P. (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry, 69, 513519. doi:10.1016/j.biopsych.2010.09.024Google Scholar
Hu, X., Oroszi, G., Chun, J., Smith, T.L., Goldman, D., & Schuckit, M.A. (2005). An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcoholism, Clinical and Experimental Research, 29, 816. doi:10.1097/01.ALC.0000150008.68473.62Google Scholar
Hu, X.Z., Lipsky, R.H., Zhu, G., Akhtar, L.A., Taubman, J., Greenberg, B.D., & Goldman, D. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. American Journal of Human Genetics, 78, 815826. doi:10.1086/503850Google Scholar
Jonassen, R., Foss Haug, K.B., Endestad, T., Bentsen, H., Grimholt, R.M., & Landro, N.I. (2013). Associations between serotonin transporter polymorphisms and cognitive processing applying the Emo 1-back task. Cognition and Emotion, 27, 465473. doi:10.1080/02699931.2012.726213Google Scholar
Kano, M., Mizuno, T., Kawano, Y., Aoki, M., Kanazawa, M., & Fukudo, S. (2012). Serotonin transporter gene promoter polymorphism and alexithymia. Neuropsychobiology, 65, 7682. doi:10.1159/000329554Google Scholar
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression metaanalysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444454. doi:10.1001/archgenpsychiatry.2010.189CrossRefGoogle ScholarPubMed
Key, B.L., Campbell, T.S., Bacon, S.L., & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31, 237248. doi:10.1007/s10865-008-9152-9Google Scholar
Kim, S.J., Kang, J.I., Namkoong, K., & Song, D.H. (2011). The effects of serotonin transporter promoter and monoamine oxidase A gene polymorphisms on trait emotional intelligence. Neuropsychobiology, 64, 224230. doi:10.1159/000327705Google Scholar
Kohler, C.G., Hoffman, L.J., Eastman, L.B., Healey, K., & Moberg, P.J. (2011). Facial emotion perception in depression and bipolar disorder: A quantitative review. Psychiatry Research, 188, 303309. doi:10.1016/j.psychres.2011.04.019Google Scholar
Kohler, C.G., Walker, J.B., Martin, E.A., Healy, K.M., & Moberg, P.J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36, 10091019. doi:10.1093/schbul/sbn192Google Scholar
Lachman, H.M., Papolos, D.F., Saito, T., Yu, Y.M., Szumlanski, C.L., & Weinshilboum, R.M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243250. doi:10.1097/00008571-199606000-00007Google Scholar
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2009). Neural substrates of pleiotropic action of genetic variation in COMT: A meta-analysis. Molecular Psychiatry, 15(9), 918927. doi:10.1038/mp.2009.36CrossRefGoogle ScholarPubMed
Mikolajczak, M., Luminet, O., Leroy, C., & Roy, E. (2007). Psychometric properties of the Trait Emotional Intelligence Questionnaire: Factor structure, reliability, construct, and incremental validity in a French-speaking population. Journal of Personality Assessment, 88, 338353. doi:10.1080/00223890701333431Google Scholar
Mikolajczak, M., Nelis, D., Hansenne, M., & Quoidbach, J. (2008). If you can regulate sadness, you can probably regulate shame: Associations between trait emotional intelligence, emotion regulation and coping efficiency across discrete emotions. Personality and Individual Differences, 44, 13561368. doi:10.1016/j.paid.2007.12.004Google Scholar
Minelli, A., Bonvicini, C., Scassellati, C., Sartori, R., & Gennarelli, M. (2011). The influence of psychiatric screening in healthy populations selection: A new study and meta-analysis of functional 5-HTTLPR and rs25531 polymorphisms and anxiety-related personality traits. BMC Psychiatry, 31, 1150.Google Scholar
Mizuno, T., Aoki, M., Shimada, Y., Inoue, M., Nakaya, K., Takahashi, T., … Fukudo, S. (2006). Gender difference in association between polymorphism of serotonin transporter gene regulatory region and anxiety. Journal of Psychosomatic Research, 60, 9197. doi:10.1016/j.jpsychores.2005.06.068Google Scholar
Montag, C., Buckholtz, J.W., Hartmann, P., Merz, M., Burk, C., Hennig, J., & Reuter, M. (2008). COMT genetic variation affects fear processing: Psychophysiological evidence. Behavioral Neuroscience, 122, 901909. doi:10.1037/0735-7044.122.4.901Google Scholar
Murphy, S. E, Norbury, R., Godlewska, B.R., Cowen, P.J., Mannie, Z.M., Harmer, C.J., & Munafò, M.R. (2013). The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: A meta-analysis. Molecular Psychiatry, 18, 512520. doi:10.1038/mp.2012.19Google Scholar
Naudts, K.H., Azevedo, R.T., David, A.S., van Heeringen, C., & Gibbs, A.A. (2012). Influence of COMT val158met and ADRA2B deletion polymorphisms on recollection and familiarity components of human emotional memory. Journal of Psychopharmacology, 26, 819829. doi:10.1177/0269881111416688Google Scholar
Oberacher, H., Pitterl, F., Niederstätter, H., Weiss, E.M., Stadelmann, E., Marksteiner, J., & Parson, W. (2006). Direct molecular haplotyping of multiple polymorphisms within exon 4 of the human catechol-O-methyltransferase gene by liquid chromatography–electrospray ionization time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 386, 8391. doi:10.1007/s00216-006-0589-9Google Scholar
Papousek, I., Freudenthaler, H.H., & Schulter, G. (2008). The interplay of perceiving and regulating emotions in becoming infected with positive and negative moods. Personality and Individual Differences, 45, 463467. doi:10.1016/j.paid.2008.05.021Google Scholar
Papousek, I., Freudenthaler, H.H., & Schulter, G. (2011). Typical performance measures of emotion regulation and emotion perception and frontal EEG asymmetry in an emotional contagion paradigm. Personality and Individual Differences, 51, 10181022. doi:10.1016/j.paid.2011.08.013CrossRefGoogle Scholar
Papousek, I., Reiser, E.M., Schulter, G., Fink, A., Holmes, E.A., Niederstätter, H., & Weiss, E.M. (2013). Serotonin transporter genotype (5-HTTLPR) and electrocortical responses indicating the sensitivity to negative emotional cues. Emotion, 13, 11731181. doi:10.1037/a0033997Google Scholar
Papousek, I., Ruch, W., Freudenthaler, H.H., Kogler, E., Lang, B., & Schulter, G. (2009). Gelotophobia, emotion-related skills and responses to the affective states of others. Personality and Individual Differences, 47, 5863. doi:10.1016/j.paid.2009.01.047Google Scholar
Papousek, I., Weiss, E.M., Reiser, E.M., Schulter, G., Freudenthaler, H.H., & Lackner, H.K. (2013). Self-rated social-emotional perception and its neurophysiologic and cardiac correlates while viewing a film showing the suffering of other people. International Journal of Psychological Research, 6, 4255.Google Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E.M., Verchinski, B.A., Munoz, K.E., Kolachana, B.S., & Weinberger, D.R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834. doi:10.1038/nn1463Google Scholar
Poletti, S., Radaelli, D., Cavallaro, R., Bosia, M., Lorenzi, C., Pirovano, A., … Benedetti, F. (2013). Catechol-O-methyltransferase (COMT) genotype biases neural correlates of empathy and perceived personal distress in schizophrenia. Comprehensive Psychiatry, 54, 181186. doi:10.1016/j.comppsych.2012.06.008Google Scholar
Qualter, P., Barlow, A., & Stylianou, M.S. (2011). Investigating the relationship between trait and ability emotional intelligence and theory of mind. British Journal of Developmental Psychology, 29, 437454. doi:10.1348/026151010X502999Google Scholar
Reja, V., Kwok, A., Stone, G., Yang, L., Missel, A., Menzel, C., & Bassam, B. (2010). ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis. Methods, 50, 1014. doi:10.1016/j.ymeth.2010.02.006Google Scholar
Saklofske, D.H., Austin, E.J., & Minski, P.S. (2003). Factor structure and validity of a trait emotional intelligence measure. Personality and Individual Differences, 34, 707721. doi:10.1016/S0191-8869(02)00056-9Google Scholar
Seamans, J.K., & Yang, C.R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 158. doi:10.1016/j.pneurobio.2004.05.006Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics. 127 B, 8589. doi:10.1002/ajmg.b.20158Google Scholar
Smolka, M.N., Buhler, M., Schumann, G., Klein, S., Hu, X.Z., Moayer, M., … Heinz, A. (2007). Gene-gene effects on central processing of aversive stimuli. Molecular Psychiatry, 12, 307317. doi:10.1038/sj.mp.4001946Google Scholar
Soeiro-de-Souza, M.G., Bio, D.S., David, D.P., Rodrigues dos Santos, D. Jr., Kerr, D.S., Gattaz, W.F., … Moreno, R.A. (2012). COMT Met (158) modulates facial emotion recognition in bipolar I disorder mood episodes. Journal of Affective Disorders, 136, 370376. doi:10.1016/j.jad.2011.11.021Google Scholar
Starr, J.M., Fox, H., Harris, S.E., Deary, I.J., & Whalley, L.J. (2007). COMT genotype and cognitive ability: A longitudinal aging study. Neuroscience Letters, 421, 5761. doi:10.1016/j.neulet.2007.05.023Google Scholar
Stoltenberg, S.F., & Vandever, J.M. (2010). Gender moderates the association between 5-HTTLPR and decision-making under ambiguity but not under risk. Neuropharmacology, 58, 423428. doi:10.1016/j.neuropharm.2009.09.010Google Scholar
Tunbridge, E.M., Harrison, P.J., & Weinberger, D.R. (2006). Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141151. doi:10.1016/j.biopsych.2005.10.024Google Scholar
Weiss, E.M., Schulter, G., Freudenthaler, H.H., Hofer, E., Pichler, N., & Papousek, I. (2012). Potential markers of aggressive behavior: The fear of other persons’ laughter and its overlaps with mental disorders. PLoS One, 7, e38088. doi:10.1371/journal.pone.0038088Google Scholar
Weiss, E.M., Stadelmann, E., Kohler, C.G., Brensinger, C.M., Nolan, K.A., Oberacher, H., … Marksteiner, J. (2007). Differential effect of catechol-O-methyltransferase Val158Met genotype on emotional recognition abilities in healthy men and women. Journal of the International Neuropsychological Society, 13, 881887. doi:10.1017/S1355617707070932Google Scholar
Zubieta, J.-K., Heitzeg, M.M., Smith, Y.R., Bueller, J.A., Xu, K., Xu, Y., … Goldman, D. (2003). COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science, 299, 12401243. doi:10.1126/science.1078546Google Scholar