Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T05:56:08.421Z Has data issue: false hasContentIssue false

Do Alzheimer’s Disease Patients Benefit From Prior-Knowledge in Associative Recognition Memory?

Published online by Cambridge University Press:  30 January 2019

Emma Delhaye*
Affiliation:
GIGA-CRC In-Vivo Imaging, University of Liege, Belgium
Adrien Folville
Affiliation:
GIGA-CRC In-Vivo Imaging, University of Liege, Belgium
Isabelle Simoes Loureiro
Affiliation:
Cognitive Psychology and Neuropsychology Department, University of Mons, Belgium
Laurent Lefebvre
Affiliation:
Cognitive Psychology and Neuropsychology Department, University of Mons, Belgium
Eric Salmon
Affiliation:
GIGA-CRC In-Vivo Imaging, University of Liege, Belgium Memory clinic, CHU Liège, University of Liège, Belgium
Christine Bastin
Affiliation:
GIGA-CRC In-Vivo Imaging, University of Liege, Belgium
*
Correspondence and reprint requests to: Emma Delhaye, Bât. B30, GIGA-CRC In-Vivo Imaging, Allée du 6 Août 8, 4000 Liège 1, Belgium. E-mail: emma.delhaye@uliege.be

Abstract

Objectives: Although the influence of prior knowledge on associative memory in healthy aging has received great attention, it has never been studied in Alzheimer’s disease (AD). This study aimed at assessing whether AD patients could benefit from prior knowledge in associative memory and whether such benefit would be related to the integrity of their semantic memory. Methods: Twenty-one AD patients and 21 healthy older adults took part in an associative memory task using semantically related and unrelated word pairs and were also submitted to an evaluation of their semantic memory. Results: While participants of both groups benefited from semantic relatedness in associative discrimination, related pairs recognition was significantly predicted by semantic memory integrity in healthy older adults only. Conclusions: We suggest that patients benefitted from semantic knowledge to improve their performance in the associative memory task, but that such performance is not related to semantic knowledge integrity evaluation measures because the two tasks differ in the way semantic information is accessed: in an automatic manner for the associative memory task, with automatic processes thought to be relatively preserved in AD, and in a controlled manner for the semantic knowledge evaluation, with controlled processes thought to be impaired in AD. (JINS, 2019, 25, 443–452)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally

References

REFERENCES

Aronoff, J.M., Gonnerman, L.M., Almor, A., Arunachalam, S., Kempler, D., & Andersen, E.S. (2006). Information content versus relational knowledge: Semantic deficits in patients with Alzheimer’s disease. Neuropsychologia, 44(1), 2135. http://dx.doi.org/10.1016/j.neuropsychologia.2005.04.014CrossRefGoogle ScholarPubMed
Backman, L., & Herlitz, A. (1990). The relationship between prior knowledge and face recognition memory in normal aging and Alzheimer’s disease. Journal of Gerontology, 45(3), P94P100. https://doi.org/10.1093/geronj/45.3.P94CrossRefGoogle ScholarPubMed
Balota, D.A., Burgess, G.C., Cortese, M.J., & Adams, D.R. (2002). The word-frequency mirror effect in young, old, and early-stage Alzheimer’s disease: Evidence for two processes in episodic recognition performance. Journal of Memory and Language, 46, 199226.CrossRefGoogle Scholar
Bartlett, F.C. (1932). Remembering: An experimental and social study. Cambridge: Cambridge University.Google Scholar
Bastin, C., Bahri, M.A., Miévis, F., Lemaire, C., Collette, F., Genon, S., … Salmon, E. (2014). Associative memory and its cerebral correlates in Alzheimer’s disease: Evidence for distinct deficits of relational and conjunctive memory. Neuropsychologia, 63, 99106. https://doi.org/10.1016/j.neuropsychologia.2014.08.023CrossRefGoogle ScholarPubMed
Bastin, C., Kerrouche, N., Lekeu, F., Adam, S., Guillaume, B., Lemaire, C., … Salmon, E. (2010). Controlled memory processes in questionable Alzheimer’s disease: A view from neuroimaging research. Journal of Alzheimer’s Disease, 20(2), 547560.CrossRefGoogle ScholarPubMed
Bird, C.M., Davies, R.A., Ward, J., & Burgess, N. (2010). Effects of pre-experimental knowledge on recognition memory. Learning & Memory, 18(1), 1114. https://doi.org/10.1101/lm.1952111CrossRefGoogle ScholarPubMed
Brickman, A.M., & Stern, Y. (2009). Aging and memory in humans. Retrieved from http://columbianeuroresearch.org/sergievsky/pdfs/agingandmemoryinhumans.pdfGoogle Scholar
Cardebat, D., Aithamon, B., & Puel, M. (1995). Les troubles du langage dans les démences de type Alzheimer. Neuropsychologie Clinique Des Démences: Évaluations et Prises En Charge, 183198.Google Scholar
Castel, A.D. (2005). Memory for grocery prices in younger and older adults: The role of schematic support. Psychology and Aging, 20(4), 718721. https://doi.org/10.1037/0882-7974.20.4.718CrossRefGoogle ScholarPubMed
Chertkow, H., Whatmough, C., Saumier, D., & Duong, A. (2008). Cognitive neuroscience studies of semantic memory in Alzheimer’s disease. Progress in Brain Research, 169, 393407.CrossRefGoogle ScholarPubMed
Clarke, A., & Tyler, L.K. (2015). Understanding what we see: How we derive meaning from vision. Trends in Cognitive Sciences, 19(11), 677687. https://doi.org/10.1016/j.tics.2015.08.008CrossRefGoogle ScholarPubMed
Coane, J.H., Balota, D.A., Dolan, P.O., & Jacoby, L.L. (2011). Not all sources of familiarity are created equal: The case of word frequency and repetition in episodic recognition. Memory & Cognition, 39(5), 791805. https://doi.org/10.3758/s13421-010-0069-5CrossRefGoogle ScholarPubMed
Craik, F.I., & Lockhart, R.S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671684.CrossRefGoogle Scholar
Craik, F.I.M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268294. http://dx.doi.org/10.1037/0096-3445.104.3.268CrossRefGoogle Scholar
Drag, L.L., & Bieliauskas, L.A. (2010). Contemporary review 2009: Cognitive aging. Journal of Geriatric Psychiatry and Neurology, 23(2), 7593. https://doi.org/10.1177/0891988709358590CrossRefGoogle ScholarPubMed
Dubois, D., & Poitou, J. (2002). Les normes catégorielles: catégories sémantiques et/ou listes de mots. Cahier Du LCPE, 5.Google Scholar
El Haj, M., Fasotti, L., & Allain, P. (2012). Source monitoring in Alzheimer’s disease. Brain and Cognition, 80(2), 185191. doi:10.1016/j.bandc.2012.06.004CrossRefGoogle ScholarPubMed
El Haj, M., Moroni, C., Luyat, M., Omigie, D., & Allain, P. (2014). To what extent does destination recall induce episodic reliving? Evidence from Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 36(2), 127136. doi:10.1080/13803395.2013.869309CrossRefGoogle ScholarPubMed
El Haj, M., Antoine, P., Nandrino, J.L., & Kapogiannis, D. (2015). Autobiographical memory decline in Alzheimer’s disease, a theoretical and clinical overview. Ageing Research Reviews, 23(Pt B), 183192. doi:10.1016/j.arr.2015.07.001CrossRefGoogle ScholarPubMed
El Haj, M., Gely-Nargeot, M.C., & Raffard, S. (2015). Destination memory and cognitive theory of mind in Alzheimer’s disease. Journal of Alzheimer’s Disease, 48, 529536.CrossRefGoogle ScholarPubMed
Fabrigoule, C., Rouch, I., Taberly, A., Letenneur, L., Commenges, D., Mazaux, J.-M., … Dartigues, J.-F. (1998). Cognitive process in preclinical phase of dementia. Brain, 121(1), 135141.CrossRefGoogle Scholar
Fang, J., Rüther, N., Bellebaum, C., Wiskott, L., & Cheng, S. (2018). The Interaction between Semantic Representation and Episodic Memory. Neural Computation, 30(2), 293332. https://doi.org/10.1162/neco_a_01044CrossRefGoogle ScholarPubMed
Gallo, D.A., Sullivan, A.L., Daffner, K.R., Schacter, D.L., & Budson, A.E. (2004). Associative recognition in Alzheimer’s disease: Evidence for impaired recall-to-reject. Neuropsychology, 18(3), 556563. https://doi.org/10.1037/0894-4105.18.3.556CrossRefGoogle ScholarPubMed
Greenberg, D.L., Keane, M.M., Ryan, L., & Verfaellie, M. (2009). Impaired category fluency in medial temporal lobe amnesia: The role of episodic memory. Journal of Neuroscience, 29(35), 1090010908. https://doi.org/10.1523/JNEUROSCI.1202-09.2009CrossRefGoogle ScholarPubMed
Greenberg, D.L., & Verfaellie, M. (2010). Interdependence of episodic and semantic memory: Evidence from neuropsychology. Journal of the International Neuropsychological Society, 16(05), 748753. https://doi.org/10.1017/S1355617710000676CrossRefGoogle ScholarPubMed
Greve, A., van Rossum, M.C.W., & Donaldson, D.I. (2007). Investigating the functional interaction between semantic and episodic memory: Convergent behavioral and electrophysiological evidence for the role of familiarity. NeuroImage, 34(2), 801814. https://doi.org/10.1016/j.neuroimage.2006.07.043CrossRefGoogle Scholar
Hemmer, P., & Steyvers, M. (2009). Integrating episodic memories and prior knowledge at multiple levels of abstraction. Psychonomic Bulletin & Review, 16(1), 8087. https://doi.org/10.3758/PBR.16.1.80CrossRefGoogle ScholarPubMed
Huff, F.J., Corkin, S., & Growdon, J.H. (1986). Semantic impairment and anomia in Alzheimer’s disease. Brain and Language, 28(2), 235249. https://doi.org/10.1016/0093-934X(86)90103-3CrossRefGoogle ScholarPubMed
Kan, I.P., Alexander, M.P., & Verfaellie, M. (2009). Contribution of prior semantic knowledge to new episodic learning in amnesia. Journal of Cognitive Neuroscience, 21(5), 938944. https://doi.org/10.1162/jocn.2009.21066CrossRefGoogle ScholarPubMed
Kivisaari, S.L., Monsch, A.U., & Taylor, K.I. (2013). False positives to confusable objects predict medial temporal lobe atrophy: False positives and medial temporal lobe atrophy. Hippocampus, 23(9), 832841. https://doi.org/10.1002/hipo.22137CrossRefGoogle ScholarPubMed
Kivisaari, S.L., Tyler, L.K., Monsch, A.U., & Taylor, K.I. (2012). Medial perirhinal cortex disambiguates confusable objects. Brain, 135(12), 37573769. https://doi.org/10.1093/brain/aws277CrossRefGoogle ScholarPubMed
Koen, J.D., & Yonelinas, A.P. (2014). Recollection, not familiarity, decreases in healthy ageing: Converging evidence from four estimation methods. Memory, 114. https://doi.org/10.1080/09658211.2014.985590Google ScholarPubMed
Laiacona, M., Barbarotto, R., Trivelli, C., & Capitani, E. (1993). Dissociazioni semantiche intercategoriali: descrizione di una batteria standardizzata e dati normativi [Category specific semantic defects: A standardised test with normative data]. Archivio Di Psicologia, Neurologia e Psichiatria, 54(2), 209248.Google Scholar
Laisney, M., Desgranges, B., Eustache, F., & Giffard, B. (2010). L’altération du réseau lexico-sémantique dans la maladie d’Alzheimer et la démence sémantique à travers le prisme des effets d’amorçage sémantique. Revue de Neuropsychologie, 2(1), 4654.CrossRefGoogle Scholar
Lipinska, B., Backman, L., & Herlitz, A. (1992). When Greta Garbo is easier to remember than Stefan Edberg: Influences of prior knowledge on recognition memory in Alzheimer’s disease. Psychology and Aging, 7(2), 214220.CrossRefGoogle Scholar
Macmillan, N.A., & Creelman, C.D. (2005). Detection theory: A user’s guide. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
McGillivray, S., & Castel, A.D. (2010). Memory for age–face associations in younger and older adults: The role of generation and schematic support. Psychology and Aging, 25(4), 822832. https://doi.org/10.1037/a0021044CrossRefGoogle ScholarPubMed
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., … Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263269. https://doi.org/10.1016/j.jalz.2011.03.005CrossRefGoogle Scholar
Mitchell, K.J., & Johnson, M.K. (2010). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory?. Psychological Bulletin, 135(4), 638.CrossRefGoogle Scholar
Moses, S.N., Ryan, J.D., Bardouille, T., Kovacevic, N., Hanlon, F.M., & McIntosh, A.R. (2009). Semantic information alters neural activation during transverse patterning performance. NeuroImage, 46(3), 863873. https://doi.org/10.1016/j.neuroimage.2009.02.042CrossRefGoogle ScholarPubMed
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 11701187. https://doi.org/10.1037//0278-7393.26.5.1170Google ScholarPubMed
Naveh-Benjamin, M., Hussain, Z., Guez, J., & Bar-On, M. (2003). Adult age differences in episodic memory: Further support for an associative-deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 826837. https://doi.org/10.1037/0278-7393.29.5.826Google ScholarPubMed
Ostreicher, M.L., Moses, S.N., Rosenbaum, R.S., & Ryan, J.D. (2010). Prior experience supports new learning of relations in aging. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65B(1), 3241. https://doi.org/10.1093/geronb/gbp081CrossRefGoogle Scholar
Patterson, M.M., Light, L.L., Van Ocker, J.C., & Olfman, D. (2009). Discriminating semantic from episodic relatedness in young and older adults. Aging, Neuropsychology, and Cognition, 16(5), 535562. https://doi.org/10.1080/13825580902866638CrossRefGoogle ScholarPubMed
Reilly, J., Peelle, J.E., Antonucci, S.M., & Grossman, M. (2011). Anomia as a marker of distinct semantic memory impairments in Alzheimer’s disease and semantic dementia. Neuropsychology, 25(4), 413426. https://doi.org/10.1037/a0022738CrossRefGoogle ScholarPubMed
Rogers, S.L., & Friedman, R.B. (2008). The underlying mechanisms of semantic memory loss in Alzheimer’s disease and semantic dementia. Neuropsychologia, 46(1), 1221. https://doi.org/10.1016/j.neuropsychologia.2007.08.010CrossRefGoogle ScholarPubMed
Rogers, T.T., Ivanoiu, A., Patterson, K., & Hodges, J.R. (2006). Semantic memory in Alzheimer’s disease and the frontotemporal dementias: A longitudinal study of 236 patients. Neuropsychology, 20(3), 319335. https://doi.org/10.1037/0894-4105.20.3.319CrossRefGoogle ScholarPubMed
Ryan, J.D., D’Angelo, M.C., Kamino, D., Ostreicher, M., Moses, S.N., & Rosenbaum, R.S. (2016). Relational learning and transitive expression in aging and amnesia: Relational learning and transitive expression. Hippocampus, 26(2), 170184. https://doi.org/10.1002/hipo.22501CrossRefGoogle ScholarPubMed
Ryan, L., Cardoza, J.A., Barense, M.D., Kawa, K.H., Wallentin-Flores, J., Arnold, W.T., & Alexander, G.E. (2012). Age-related impairment in a complex object discrimination task that engages perirhinal cortex. Hippocampus, 22(10), 19781989. https://doi.org/10.1002/hipo.22069CrossRefGoogle Scholar
Simoes Loureiro, I., & Lefebvre, L. (2015). The SQK: A semantic knowledge questionnaire to specify the severity of semantic deterioration in Alzheimer’s disease patients. Geriatr Psychol Neuropsychiatr Vieil, 13(2), 225233. https://doi.org/doi:10.1684/pnv.2015.0535Google ScholarPubMed
Smyth, A.C., & Naveh-Benjamin, M. (2018). Existing knowledge of linguistic structure mitigates associative memory deficits in older adults. Experimental Aging Research, 44(1), 3547. https://doi.org/10.1080/0361073X.2017.1398517CrossRefGoogle ScholarPubMed
Sperling, R.A., Bates, J.F., Chua, E.F., Cocchiarella, A.J., Rentz, D.M., Rosen, B.R., … Albert, M.S. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, & Psychiatry, 74(1), 4450.CrossRefGoogle Scholar
Stevens-Adams, S.M., Goldsmith, T.E., & Butler, K.M. (2012). Variation in individuals’ semantic networks for common knowledge is associated with false memory. Quarterly Journal of Experimental Psychology, 65(6), 10351043. https://doi.org/10.1080/17470218.2012.680894CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In: E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381403). New York: Academic Press.Google Scholar
Umanath, S., & Marsh, E.J. (2014). Understanding how prior knowledge influences memory in older adults. Perspectives on Psychological Science, 9(4), 408426.CrossRefGoogle ScholarPubMed
Wolk, D.A., Signoff, E.D., & DeKosky, S.T. (2008). Recollection and familiarity in amnestic mild cognitive impairment: A global decline in recognition memory. Neuropsychologia, 46(7), 19651978. https://doi.org/10.1016/j.neuropsychologia.2008.01.017CrossRefGoogle ScholarPubMed
Zannino, G.D., Perri, R., Pasqualetti, P., Paola, M.D., Caltagirone, C., & Carlesimo, G.A. (2006). The role of semantic distance in category-specific impairments for living things: Evidence from a case of semantic dementia. Neuropsychologia, 44(7), 10171028. https://doi.org/10.1016/j.neuropsychologia.2005.11.006CrossRefGoogle ScholarPubMed