Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:02:31.941Z Has data issue: false hasContentIssue false

Domain-specific cognitive recovery after first-ever stroke: A follow-up study of 111 cases

Published online by Cambridge University Press:  16 December 2005

G.M.S. NYS
Affiliation:
Psychological Laboratory, Helmholtz Institute, Utrecht University, The Netherlands Department of Neurology, University Medical Centre Utrecht, The Netherlands
M.J.E. VAN ZANDVOORT
Affiliation:
Psychological Laboratory, Helmholtz Institute, Utrecht University, The Netherlands Department of Neurology, University Medical Centre Utrecht, The Netherlands
P.L.M. DE KORT
Affiliation:
Department of Neurology, St. Elisabeth Hospital, Tilburg, The Netherlands Department of Neurology, Tweesteden Hospital, Tilburg, The Netherlands
B.P.W. JANSEN
Affiliation:
Department of Neurology, Tweesteden Hospital, Tilburg, The Netherlands
H.B. VAN DER WORP
Affiliation:
Department of Neurology, University Medical Centre Utrecht, The Netherlands
L.J. KAPPELLE
Affiliation:
Department of Neurology, University Medical Centre Utrecht, The Netherlands
E.H.F. DE HAAN
Affiliation:
Psychological Laboratory, Helmholtz Institute, Utrecht University, The Netherlands Department of Neurology, University Medical Centre Utrecht, The Netherlands

Abstract

The objective of this study is to examine the prognosis of acute cognitive disorders post-stroke, and to evaluate which clinical factors predict domain-specific cognitive recovery. We followed the course of cognitive functioning in 111 stroke patients and 77 healthy controls by administering two neuropsychological examinations with a 6 to 10 month interval (mean interval, 7.5 ± 1.3 months). The baseline examination was administered within three weeks post-stroke (mean interval, 7.9 ± 4.2 days). To examine determinants of domain-specific cognitive recovery, we recorded vascular risk factors, clinical variables, and lesion characteristics. Recovery in visual perception/construction (83%) and visual memory (78%) was the most common. An acute cognitive disorder predicted a long-term disorder in the same domain (all p < .05), except for visual perception/construction. Factors associated with poor cognitive recovery were age (all p < .01), preexistent verbal ability (all p < .005), lesion locations involving the temporal (all p < .05), frontal (p < .05) and occipital lobe (all p < .05), lesion volume (p ≤ .001), and diabetes mellitus (p < .01). An early neuropsychological examination provides valuable information on long-term cognitive performance. The prognosis of higher-level visual disorders is the most favorable. Cognitive recovery is associated with age, preexistent ability, lesion volume, lesion location, and diabetes mellitus. (JINS, 2005, 11, 795–806.)

Type
Research Article
Copyright
© 2005 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auchus, A.P., Chen, C.P., Sodagar, S.N., Thong, M., & Sng, E.C. (2002). Single stroke dementia: Insights from 12 cases in Singapore. Journal of the Neurological Sciences, 203–204, 8589.Google Scholar
Baldo, J.V., Dronkers, N.F., Wilkins, D., Ludy, C., Raskin, P., & Kim, J. (2005). Is problem solving dependent on language? Brain and Language, 92, 240250.Google Scholar
Ballard, C., Rowan, E., Stephens, S., Kalaria, R., & Kenny, R.A. (2003). Prospective follow-up study between 3 and 15 months after stroke: Improvements and decline in cognitive function among dementia-free stroke survivors >75 years of age. Stroke, 34, 24402444.CrossRefGoogle Scholar
Biernaskie, J., Chernenko, G., & Corbett, D. (2004). Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. Journal of Neuroscience, 24, 12451254.Google Scholar
Biessels, G.J., van der Heide, L.P., Kamal, A., Bleys, R.L., & Gispen, W.H. (2002). Ageing and diabetes: Implications for brain function. European Journal of Pharmacology, 441, 114.Google Scholar
Brott, T., Adams, H.P., Jr., Olinger, C.P., Marler, J.R., Barsan, W.G., Biller, J., Spilker, J., Holleran, R., Eberle, R., Hertzberg, V., Rorick, M., Moomaw, C.J., & Walker, M. (1989). Measurements of acute cerebral infarction: A clinical examination scale. Stroke, 20, 864870.Google Scholar
Calvert, G.A., Brammer, M.J., Morris, R.G., Williams, S.C., King, N., & Matthews, P.M. (2000). Using fMRI to study recovery from acquired dysphasia. Brain and Language, 71, 391399.CrossRefGoogle Scholar
Clark-Carter, D. (1997). Doing quantitative psychological research. From design to report. Hove, UK: Psychology Press.
Crawford, J.R., Parker, D.M., & Besson, J.A. (1988). Estimation of premorbid intelligence in organic conditions. British Journal of Psychiatry, 153, 178181.CrossRefGoogle Scholar
de Jonghe, J.F., Schmand, B., Ooms, M.E., & Ribbe, M.W. (1997). Abbreviated form of the Informant Questionnaire on Cognitive Decline in the Elderly. Tijdschrift voor Gerontologie en Geriatrie, 28, 224229.Google Scholar
De Renzi, E., Faglioni, P., Savoiardo, M., & Vignolo, L.A. (1966). The influence of aphasia and of the hemispheric side of the cerebral lesion on abstract thinking. Cortex, 2, 339420.Google Scholar
Desmond, D.W., Moroney, J.T., Sano, M., & Stern, Y. (1996). Recovery of cognitive function after stroke. Stroke, 27, 17981803.CrossRefGoogle Scholar
Elderkin-Thompson, V., Kumar, A., Mintz, J., Boone, K., Bahng, E., & Lavretsky, H. (2004). Executive dysfunction and visuospatial ability among depressed elders in a community setting. Archives of Clinical Neuropsychology, 19, 597611.CrossRefGoogle Scholar
Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., & Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 13131317.Google Scholar
Ferro, J.M. (2001). Hyperacute cognitive stroke syndromes. Journal of Neurology, 248, 841849.Google Scholar
Gainotti, G., D'Erme, P., Villa, G., & Caltagirone, C. (1986). Focal brain lesions and intelligence: A study with a new version of Raven's Colored Matrices. Journal of Clinical and Experimental Neuropsychology, 8, 3750.Google Scholar
Galski, T., Bruno, R.L., Zorowitz, R., & Walker, J. (1993). Predicting length of stay, functional outcome, and aftercare in the rehabilitation of stroke patients. The dominant role of higher-order cognition. Stroke, 24, 17941800.Google Scholar
Henon, H., Pasquier, F., Durieu, I., Godefroy, O., Lucas, C., Lebert, F., & Leys, D. (1997). Preexisting dementia in stroke patients: Baseline frequency, associated factors, and outcome. Stroke, 28, 24292436.CrossRefGoogle Scholar
Hillis, A.E., Barker, P.B., Wityk, R.J., Aldrich, E.M., Restrepo, L., Breese, E.L., & Work, M. (2004). Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain and Language, 89, 524530.CrossRefGoogle Scholar
Hillis, A.E., Wityk, R.J., Barker, P.B., Ulatowski, J.A., & Jacobs, M.A. (2003). Change in perfusion in acute nondominant hemisphere stroke may be better estimated by tests of hemispatial neglect than by the National Institutes of Health Stroke Scale. Stroke, 34, 23922396.Google Scholar
Hochstenbach, J.B., den Otter, R., & Mulder, T.W. (2003). Cognitive recovery after stroke: A 2-year follow-up. Archives of Physical Medicine and Rehabilitation, 84, 14991504.Google Scholar
Hosmer, D.W. & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.
Husain, M., Mannan, S., Hodgson, T., Wojciulik, E., Driver, J., & Kennard, C. (2001). Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain, 124, 941952.Google Scholar
Jorgensen, H.S., Nakayama, H., Reith, J., Raaschou, H.O., & Olsen, T.S. (1997). Stroke recurrence: Predictors, severity, and prognosis. The Copenhagen Stroke Study. Neurology, 48, 891895.Google Scholar
Kanaya, A.M., Barrett-Connor, E., Gildengorin, G., & Yaffe, K. (2004). Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Archives of Internal Medicine, 164, 13271333.Google Scholar
Kessels, R.P., Nys, G.M., Brands, A.M., & van Zandvoort, M.J. (2004). The Location Learning Test as a measure of spatial memory: Applicability of a modified administration procedure and normative data. Tijdschrift voor Gerontologie en Geriatrie, 35, 147152.Google Scholar
Kolb, B. (1999). Synaptic plasticity and the organization of behaviour after early and late brain injury. Canadian Journal of Experimental Psychology, 53, 6276.CrossRefGoogle Scholar
Laska, A.C., Hellblom, A., Murray, V., Kahan, T., & Von Arbin, M. (2001). Aphasia in acute stroke and relation to outcome. Journal of Internal Medicine, 249, 413422.Google Scholar
Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.
Lin, J.H., Lin, R.T., Tai, C.T., Hsieh, C.L., Hsiao, S.F., & Liu, C.K. (2003). Prediction of poststroke dementia. Neurology, 61, 343348.Google Scholar
Manly, T., Woldt, K., Watson, P., & Warburton, E. (2002). Is motor perseveration in unilateral neglect ‘driven’ by the presence of neglected left-sided stimuli? Neuropsychologia, 40, 17941803.Google Scholar
Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306, 435440.CrossRefGoogle Scholar
Mok, V.C., Wong, A., Lam, W.W., Fan, Y.H., Tang, W.K., Kwok, T., Hui, A.C., & Wong, K.S. (2004). Cognitive impairment and functional outcome after stroke associated with small vessel disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 560566.CrossRefGoogle Scholar
Montgomery, S.A. & Åsberg, M. (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382389.Google Scholar
Nys, G.M.S., van Zandvoort, M.J.E., de Kort, P.L.M., van der Worp, H.B., Jansen, B.P.W., Algra, A., de Haan, E.H.F., & Kappelle, L.J. (2005). The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology, 64, 821827.Google Scholar
Paolucci, S., Antonucci, G., Grasso, M.G., Morelli, D., Troisi, E., Coiro, P., & Bragoni, M. (2000). Early versus delayed inpatient stroke rehabilitation: A matched comparison conducted in Italy. Archives of Physical Medicine and Rehabilitation, 81, 695700.Google Scholar
Patel, M., Coshall, C., Rudd, A.G., & Wolfe, C.D. (2003). Natural history of cognitive impairment after stroke and factors associated with its recovery. Clinical Rehabilitation, 17, 158166.Google Scholar
Pedersen, P.M., Jorgensen, H.S., Nakayama, H., Raaschou, H.O., & Olsen, T.S. (1995). Aphasia in acute stroke: Incidence, determinants, and recovery. Annals of Neurology, 38, 659666.CrossRefGoogle Scholar
Perani, D., Vallar, G., Paulesu, E., Alberoni, M., & Fazio, F. (1993). Left and right hemisphere contribution to recovery from neglect after right hemisphere damage:An [18F]FDG PET study of two cases. Neuropsychologia, 31, 115125.Google Scholar
Rasquin, S.M., Lodder, J., Ponds, R.W., Winkens, I., Jolles, J., & Verhey, F.R. (2004). Cognitive functioning after stroke: A one-year follow-up study. Dementia and Geriatric Cognitive Disorders, 18, 138144.CrossRefGoogle Scholar
Robertson, I.H. & Murre, J.M. (1999). Rehabilitation of brain damage: Brain plasticity and principles of guided recovery. Psychological Bulletin, 125, 544575.CrossRefGoogle Scholar
Robertson, I.H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The Test of Everyday Attention. Bury St. Edmunds, UK: Thames Valley Test Company.
Rusconi, M.L., Maravita, A., Bottini, G., & Vallar, G. (2002). Is the intact side really intact? Perseverative responses in patients with unilateral neglect: A productive manifestation. Neuropsychologia, 40, 594604.Google Scholar
Sachdev, P.S., Brodaty, H., Valenzuela, M.J., Lorentz, L.M., & Koschera, A. (2004). Progression of cognitive impairment in stroke patients. Neurology, 63, 16181623.CrossRefGoogle Scholar
Schmand, B., Bakker, D., Saan, R., & Louman, J. (1991). The Dutch Reading Test for Adults: A measure of premorbid intelligence level. Tijdschrift voor Gerontologie en Geriatrie, 22, 1519.Google Scholar
Staff, R.T., Murray, A.D., Deary, I.J., & Whalley, L.J. (2004). What provides cerebral reserve? Brain, 127, 11911199.Google Scholar
Stern, Y., Zarahn, E., Hilton, H.J., Flynn, J., DeLaPaz, R., & Rakitin, B. (2003). Exploring the neural basis of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 25, 691701.CrossRefGoogle Scholar
Szirmai, I., Vastagh, I., Szombathelyi, E., & Kamondi, A. (2002). Strategic infarcts of the thalamus in vascular dementia. Journal of the Neurological Sciences, 203–204, 9197.Google Scholar
Tatemichi, T.K., Desmond, D.W., Stern, Y., Paik, M., Sano, M., & Bagiella, E. (1994). Cognitive impairment after stroke: Frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 202207.Google Scholar
Tham, W., Auchus, A.P., Thong, M., Goh, M.L., Chang, H.M., Wong, M.C., & Chen, C.P. (2002). Progression of cognitive impairment after stroke: One year results from a longitudinal study of Singaporean stroke patients. Journal of the Neurological Sciences, 203–204, 4952.CrossRefGoogle Scholar
van der Worp, H.B., Claus, S.P., Bar, P.R., Ramos, L.M., Algra, A., van Gijn, J., & Kappelle, L.J. (2001). Reproducibility of measurements of cerebral infarct volume on CT scans. Stroke, 32, 424430.CrossRefGoogle Scholar
van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., & van Gijn, J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke, 19, 604607.CrossRefGoogle Scholar
van Zandvoort, M.J.E., de Haan, E.H.F., & Kappelle, L.J. (2001). Chronic cognitive disturbances after a single supratentorial lacunar infarct. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14, 98102.Google Scholar
Vermeer, S.E., Prins, N.D., den Heijer, T., Hofman, A., Koudstaal, P.J., & Breteler, M.M. (2003). Silent brain infarcts and the risk of dementia and cognitive decline. New England Journal of Medicine, 348, 12151222.Google Scholar
Watt, K.J. & O'Carroll, R.E. (1999). Evaluating methods for estimating premorbid intellectual ability in closed head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 66, 474479.Google Scholar
Wilson, B., Cockburn, J., & Halligan, P. (1987). Development of a behavioral test of visuospatial neglect. Archives of Physical Medicine and Rehabilation, 68, 98102.Google Scholar