Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:42:27.828Z Has data issue: false hasContentIssue false

Efficacy of Neurofeedback Interventions for Cognitive Rehabilitation Following Brain Injury: Systematic Review and Recommendations for Future Research

Published online by Cambridge University Press:  27 January 2020

Jordan I. Ali*
Affiliation:
Department of Psychology, University of Victoria, Victoria, BC V8W 2Y2, Canada Institute on Aging & Lifelong Health, University of Victoria, Victoria, BC V8P 2Y2, Canada
Jeremy Viczko
Affiliation:
Department of Psychology, University of Victoria, Victoria, BC V8W 2Y2, Canada
Colette M. Smart
Affiliation:
Department of Psychology, University of Victoria, Victoria, BC V8W 2Y2, Canada Institute on Aging & Lifelong Health, University of Victoria, Victoria, BC V8P 2Y2, Canada
*
*Correspondence and reprint requests to: Jordan I. Ali, Department of Psychology, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. E-mail: jali@uvic.ca

Abstract

Objectives:

Interest in neurofeedback therapies (NFTs) has grown exponentially in recent years, encouraged both by escalating public interest and the financial support of health care funding agencies. Given NFTs’ growing prevalence and anecdotally reported success in treating common effects of acquired brain injury (ABI), a systematic review of the efficacy of NFTs for the rehabilitation of ABI-related cognitive impairment is warranted.

Methods:

Eligible studies included adult samples (18+ years) with ABI, the use of neurofeedback technology for therapeutic purposes (as opposed to assessment), the inclusion of a meaningful control group/condition, and clear cognitive–neuropsychological outcomes. Initial automated search identified n = 86 candidate articles, however, only n = 4 studies met the stated eligibility criteria.

Results:

Results were inconsistent across studies and cognitive domains. Methodological and theoretical limitations precluded robust and coherent conclusions with respect to the cognitive rehabilitative properties of NFTs. We take the results of these systematic analyses as a reflection of the state of the literature at this time. These results offer a constructive platform to further discuss a number of methodological, theoretical, and ethical considerations relating to current and future NFT–ABI research and clinical intervention.

Conclusions:

Given the limited quantity and quality of the available research, there appears to be insufficient evidence to comment on the efficacy of NFTs within an ABI rehabilitation context at this time. It is imperative that future work increase the level of theoretical and methodological rigour if meaningful advancements are to be made understanding and evaluating NFT–ABI applications.

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2020. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, J., Sánchez-Carmona, A.J., Fernández-Jaén, A., & López-Martín, S. (2017). Neurofeedback for ADHD: A critical review and suggested future directions. Current Developmental Disorders Reports, 4(3), 9494. https://doi.org/10.1007/s40474-017-0120-3 CrossRefGoogle Scholar
Allison, B.Z. & Neuper, C. (2010). Could anyone use a BCI? In Tan, D. & Nijholt, A. (Eds.), Brain computer interfaces: Computer interaction series (pp. 3554). London: Springer. https://doi.org/10.1007/978-1-84996-272-8 CrossRefGoogle Scholar
Arciniegas, D.B., Anderson, C.A., Topkoff, J., & McAllister, T.W. (2005). Mild traumatic brain injury: A neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatric Disease and Treatment, 1(4), 311327. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2424119&tool=pmcentrez&rendertype=abstract Google Scholar
Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95(1), 108115. https://doi.org/10.1016/j.biopsycho.2013.11.013 CrossRefGoogle Scholar
Bink, M., van Nieuwenhuizen, C., Popma, A., Bongers, I.L., & van Boxtel, G.J.M. (2014). Neurocognitive effects of neurofeedback in adolescents with ADHD: A randomized controlled trial. The Journal of Clinical Psychiatry, 75(5), 535542. https://doi.org/10.4088/JCP.13m08590 CrossRefGoogle Scholar
Canadian Psychological Association. (2000). Canadian code of ethics for psychologists – Third edition. Ottawa, ON: Canadian Psychological Association.Google Scholar
Cascaes da Silva, F., da Rosa Iop, R., Domingos dos Santos, P., Aguiar Bezerra de Melo, L.M., Barbosa Gutierres Filho, P.J., & da Silva, R. (2016). Effects of physical-exercise-based rehabilitation programs on the quality of life of patients with Parkinson’s disease: A systematic review of randomized controlled trials. Journal of Aging and Physical Activity, 24(3), 484496.CrossRefGoogle Scholar
Cattelani, R., Zettin, M., & Zoccolotti, P. (2010). Rehabilitation treatments for adults with behavioral and psychosocial disorders following acquired brain injury: A systematic review. Neuropsychology Review, 20(1), 86102. https://doi.org/10.1007/s11065-009-9115-0 CrossRefGoogle Scholar
Chambless, D.L., Baker, M.J., Baucom, D.H., Beutler, L.E., Calhoun, K.S., Crits-christoph, P., Daiuto, A., DeRubeis, R., Detweiler, J., Haaga, D.A.F., Johnson, S.B., McCurry, S., Mueser, K.T., Pope, K.S., Sanderson, W.C., Shoham, V., Stickle, T., Williams, D.A., & Woody, S.R. (1998). Update on empirically validated therapies, II. The Clinical Psychologist, 51(1), 316. https://doi.org/10.1037/e555332011-003 Google Scholar
Chambless, D.L. & Hollon, S.D. (1998). Defining empirically supported therapies, Journal of Consulting and Clinical Psychology, 66(1), 718.CrossRefGoogle Scholar
Cho, H.-Y., Kim, K., Lee, B., & Jung, J. (2015). The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial. Journal of Physical Therapy Science, 27(3), 673676. https://doi.org/10.1589/jpts.27.673 CrossRefGoogle Scholar
Choobforoushzadeh, A., Neshat-Doost, H.T., Molavi, H., & Abedi, M.R. (2015). Effect of neurofeedback training on depression and fatigue in patients with multiple sclerosis. Applied Psychophysiology and Biofeedback, 40(1), 18. https://doi.org/10.1007/s10484-014-9267-4 CrossRefGoogle Scholar
Chow, T., Javan, T., Ros, T., & Frewen, P. (2017). EEG dynamics of mindfulness meditation versus alpha neurofeedback: A sham controlled study. Mindfulness, 8(3), 572584.CrossRefGoogle Scholar
Christensen, B.K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., & Green, R.E. (2008). Recovery of cognitive function after traumatic brain injury: A multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S3S15. https://doi.org/10.1016/j.apmr.2008.10.002 CrossRefGoogle Scholar
Davis, A.E. (2000). Mechanisms of traumatic brain injury: Biomechanical, structural and cellular considerations. Critical Care Nursing Quarterly, 23(3), 113. https://doi.org/10.1097/00002727-200011000-00002 CrossRefGoogle Scholar
Dijkers, M., Kropp, G.C., Esper, R., Yavuzer, G., Cullen, N., & Bakdalieh, Y. (2002). Quality of intervention research reporting in medical rehabilitation journals. American Journal of Physical Medicine & Rehabilitation, 81(1), 2133.CrossRefGoogle Scholar
Egner, T. & Gruzelier, J.H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 115(1), 131139. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=14706480&retmode=ref&cmd=prlinks CrossRefGoogle Scholar
Fragedakis, T.M. & Toriello, P. (2014). The development and experience of combat-related PTSD: A demand for neurofeedback as an effective form of treatment. Journal of Counseling & Development, 92(4), 481488. https://doi.org/10.1002/j.1556-6676.2014.00174.x CrossRefGoogle Scholar
Gapen, M., van der Kolk, B.A., Hamlin, E., Hirshberg, L., Suvak, M., & Spinazzola, J. (2016). A pilot study of neurofeedback for chronic PTSD. Applied Psychophysiology and Biofeedback, 41(3), 251261. https://doi.org/10.1007/s10484-015-9326-5 CrossRefGoogle Scholar
Gerin, M.I., Fichtenholtz, H., Roy, A., Walsh, C.J., Krystal, J.H., Southwick, S., & Hampson, M. (2016). Real-time fMRI neurofeedback with war veterans with chronic PTSD: A feasibility study. Frontiers in Psychiatry, 7(3), 169. https://doi.org/10.3389/fpsyt.2016.00111 CrossRefGoogle Scholar
Gevensleben, H., Kleemeyer, M., Rothenberger, L.G., Studer, P., Flaig-Röhr, A., Moll, G.H., Rothenberger, A., & Heinrich, H. (2014). Neurofeedback in ADHD: Further pieces of the puzzle. Brain Topography, 27(1), 2032. https://doi.org/10.1007/s10548-013-0285-y CrossRefGoogle Scholar
Gray, S.N. (2017). An overview of the use of neurofeedback biofeedback for the treatment of symptoms of traumatic brain injury in military and civilian populations. Medical Acupuncture, 29(4), 215219. https://doi.org/10.1089/acu.2017.1220 CrossRefGoogle Scholar
Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., Gordon, S., Meiran, N., & Todder, D. (2015). Influence of electroencephalography neurofeedback training on episodic memory: A randomized, sham-controlled, double-blind study. Memory (Hove, England), 23(5), 683694. https://doi.org/10.1080/09658211.2014.921713 CrossRefGoogle Scholar
Hammond, D.C. (2007). What is neurofeedback? Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 10(4), 2536. https://doi.org/10.1300/J184v10n04 CrossRefGoogle Scholar
Hosseini, S.M.H., Pritchard-Berman, M., Sosa, N., Ceja, A., & Kesler, S.R. (2016). Task-based neurofeedback training: A novel approach toward training executive functions. NeuroImage, 134, 153159. https://doi.org/10.1016/j.neuroimage.2016.03.035 CrossRefGoogle Scholar
Hsueh, J.-J., Chen, T.-S., Chen, J.-J., & Shaw, F.-Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Human Brain Mapping, 37(7), 26622675. https://doi.org/10.1002/hbm.23201 CrossRefGoogle Scholar
Ibric, V.L., Dragomirescu, L.G., & Hudspeth, W.J. (2009). Real-time changes in connectivities during neurofeedback. Journal of Neurotherapy, 13(3), 156165. https://doi.org/10.1080/10874200903118378 CrossRefGoogle Scholar
Jaffe, K.M., Polissar, N.L., Fay, G.C., & Liao, S. (1995). Recovery trends over three years following pediatric traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 76(1), 1726. https://doi.org/S0003-9993(95)80037-9 [pii] CrossRefGoogle Scholar
Janssen, T.W.P., Bink, M., Geladé, K., van Mourik, R., Maras, A., & Oosterlaan, J. (2016). A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(5), 633644. https://doi.org/10.1111/jcpp.12517 CrossRefGoogle Scholar
Kamiya, J. (1968). Conscious control of brain waves. Psychology Today, 1, 5660. Retrieved from https://philpapers.org/rec/KAMCCO Google Scholar
Katz, D.I. & Alexander, M.P. (1994). Traumatic brain injury: Predicting course of recovery and outcome for patients admitted to rehabilitation. Archives of Neurology, 51(7), 661670. https://doi.org/10.1001/archneur.1994.00540190041013 CrossRefGoogle Scholar
Kayiran, S., Dursun, E., Dursun, N., Ermutlu, N., & Karamürsel, S. (2010). Neurofeedback intervention in fibromyalgia syndrome; a randomized, controlled, rater blind clinical trial. Applied Psychophysiology and Biofeedback, 35(4), 293302. https://doi.org/10.1007/s10484-010-9135-9 CrossRefGoogle Scholar
Keller, I. (2001). Neurofeedback therapy of attention deficits in patients with traumatic brain injury. Journal of Neurotherapy, 5(1–2), 1932. https://doi.org/10.1300/J184v05n01_03 CrossRefGoogle Scholar
Kober, S.E., Schweiger, D., Witte, M., Reichert, J.L., Grieshofer, P., Neuper, C., & Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of NeuroEngineering and Rehabilitation, 12(1). https://doi.org/10.1186/s12984-015-0105-6 CrossRefGoogle Scholar
Kopřivová, J., Congedo, M., Raszka, M., Praško, J., Brunovský, M., & Horáček, J. (2013). Prediction of treatment response and the effect of independent component neurofeedback in obsessive–compulsive disorder: A randomized, sham-controlled, double-blind study. Neuropsychobiology, 67(4), 210223. https://doi.org/10.1159/000347087 CrossRefGoogle Scholar
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.Google Scholar
Lilienfield, S.O., Lynn, S.J., & Lohr, J.M. (2003). Science and Pseudoscience in Clinical Psychology. New York, NY: Guilford Press.Google Scholar
Luigjes, J., Segrave, R., de Joode, N., Figee, M., & Denys, D. (2018). Efficacy of invasive and non-invasive brain modulation interventions for addiction. Neuropsychology Review, 29(1), 116138. https://doi.org/10.1007/s11065-018-9393-5 CrossRefGoogle Scholar
Maher, C.G., Sherrington, C., Herbert, R.D., Moseley, A.M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83, 713721. Retrieved from http://search.proquest.com/openview/a38667b222fb11d09ddd39dd9080204f/1?pq-origsite=gscholar&cbl=40771 CrossRefGoogle Scholar
Marzbani, H., Marateb, H.R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143158. https://doi.org/10.15412/J.BCN.03070208 Google Scholar
Matzke, D., Nieuwenhuis, S., van Rijn, H., Slagter, H.A., van der Molen, M.W., & Wagenmakers, J. (2015). The effect of horizontal eye movements on free recall: A preregistered adversarial collaboration. Journal of Experimental Psychology: General, 144(1), e1e15. https://doi.org/10.1037/xge0000038 CrossRefGoogle Scholar
May, G., Benson, R., Balon, R., & Boutros, N. (2013). Neurofeedback and traumatic brain injury: A literature review. Annals of Clinical Psychiatry : Official Journal of the American Academy of Clinical Psychiatrists, 25(4), 289296. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24199220&retmode=ref&cmd=prlinks Google Scholar
McCrea, M., Iverson, G.L., McAllister, T.W., Hammeke, T.A., Powell, M.R., Barr, W.B., & Kelly, J.P. (2009). An integrated review of recovery after mild traumatic brain injury (mTBI): Implications for clinical management. The Clinical Neuropsychologist , 23, 13681390.CrossRefGoogle Scholar
Meisel, V., Servera, M., Garcia-Banda, G., Cardo, E., & Moreno, I. (2014). Neurofeedback and standard pharmacological intervention in ADHD: A randomized controlled trial with six-month follow-up. Biological Psychology, 95, 116125. https://doi.org/10.1016/j.biopsycho.2013.09.009 CrossRefGoogle Scholar
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., & PRISMA-P Group (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1 CrossRefGoogle Scholar
Moore, N.C. (2000). Review of EEG biofeedback treatment of anxiety disorders. Clinical Electroencephalography, 31(1), 16.CrossRefGoogle Scholar
Mozzambani, A.C.F., Fuso, S.F., Malta, S.M., Ribeiro, R.L., Pupo, M.C., Flaks, M.K., & Mello, M.F. (2017). Long-term follow-up of attentional and executive functions of PTSD patients. Psychology and Neuroscience, 10(2), 215224. https://doi.org/10.1037/pne0000088 CrossRefGoogle Scholar
Nicholson, A.A., Rabellino, D., Densmore, M., Frewen, P.A., Paret, C., Kluetsch, R., Schmahl, C., Théberge, J., Neufeld, R.W., McKinnon, M.C., Reiss, J., Jetly, R., & Lanius, R.A. (2017). The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real-time fMRI neurofeedback. Human Brain Mapping, 38(1), 541560. https://doi.org/10.1002/hbm.23402 CrossRefGoogle Scholar
Ninaus, M., Kober, S.E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., & Wood, G. (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Frontiers in Human Neuroscience, 7(December), 110. https://doi.org/10.3389/fnhum.2013.00914 CrossRefGoogle Scholar
Norris, S.L., Lee, C.-T., Burshteyn, D., & Cea-Aravena, J. (2008). The effects of performance enhancement training on hypertension, human attention, stress, and brain wave patterns. Journal of Neurotherapy, 4(3), 2944. https://doi.org/10.1300/J184v04n03_03 CrossRefGoogle Scholar
Novack, T.A., Bush, B.A., Meythaler, J.M., & Canupp, K. (2001). Outcome after traumatic brain injury: Pathway analysis of contributions from premorbid, injury severity, and recovery variables. Archives of Physical Medicine and Rehabilitation, 82(3), 300305. https://doi.org/10.1053/apmr.2001.18222 CrossRefGoogle Scholar
Novo-Olivas, C.A. (2014). Diagnosing and treating closed head injury: Exposing and defeating the mild huge monster. In Cantor, D.S. & Evans, J.R. (Eds.), Clinical neurotherapy (pp. 191211). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Pahlevanian, A., Alirezaloo, N., Naghel, S., Alidadi, F., Nejati, V., & Kianbakht, M. (2015). Neurofeedback associated with neurocognitive-rehabilitation training on children with attention-deficit/hyperactivity disorder (ADHD). International Journal of Mental Health and Addiction, 15(1), 110. https://doi.org/10.1007/s11469-015-9621-7 Google Scholar
QY Research. (2018). Global Neurofeedback Market Size, Status and Forecast 2025. Retrieved from http://orbisresearch.com/reports/index/global-neurofeedback-market-size-status-and-forecast-2025 Google Scholar
Rabinowitz, A.R., Hart, T., Whyte, J., & Kim, J. (2017). Neuropsychological recovery trajectories in moderate to severe traumatic brain injury: Influence of patient characteristics and diffuse axonal injury. Journal of the International Neuropsychological Society, 24(3), 110. https://doi.org/10.1017/S1355617717000996 Google Scholar
Racer, K.H. & Dishion, T.J. (2012). Disordered attention: Implications for understanding and treating internalizing and externalizing disorders in childhood. Cognitive and Behavioral Practice, 19(1), 3140. https://doi.org/10.1016/j.cbpra.2010.06.005 CrossRefGoogle Scholar
Raymond, J., Varney, C., Parkinson, L.A., & Gruzelier, J.H. (2005). The effects of alpha/theta neurofeedback on personality and mood. Cognitive Brain Research, 23(2–3), 287292. https://doi.org/10.1016/j.cogbrainres.2004.10.023 CrossRefGoogle Scholar
Reddy, R.P., Rajeswaran, J., Devi, B.I., & Kandavel, T. (2013). Neurofeedback training as an intervention in a silent epidemic: An Indian scenario. Journal of Neurotherapy, 17(4), 213225. https://doi.org/10.1080/10874208.2013.847139 CrossRefGoogle Scholar
Renton, T., Tibbles, A., & Topolovec-Vranic, J. (2017). Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review. PLoS ONE, 12(5), 117. https://doi.org/10.1371/journal.pone.0177290 CrossRefGoogle Scholar
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638641. https://doi.org/10.1037/0033-2909.86.3.638 CrossRefGoogle Scholar
Rossiter, T. (2004). The Effectiveness of neurofeedback and stimulant drugs in treating AD / HD : Part I. Review of methodological issues. Psychophysiology, 29(2), 95112. https://doi.org/10.1007/s10484-004-0383-4 Google Scholar
Russman Block, S., King, A.P., Sripada, R.K., Weissman, D.H., Welsh, R., & Liberzon, I. (2017). Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder. Cognitive, Affective, & Behavioral Neuroscience, 17(2), 422436. https://doi.org/10.3758/s13415-016-0488-2 CrossRefGoogle Scholar
Schabus, M., Griessenberger, H., Gnjezda, M. T., Heib, D. P. J., Wislowska, M., & Hoedlmoser, K. (2017). Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain, 140, 10411052.CrossRefGoogle Scholar
Schoenberger, N.E., Shiflett, S.C., Esty, M.L., Ochs, L., & Matheis, R.J. (2001). Flexyx Neurotherapy System in the treatment of traumatic brain injury: An initial evaluation. Journal of Head Trauma Rehabilitation, 16(3), 260274.CrossRefGoogle Scholar
Schretlen, D.J. & Shapiro, A.M. (2003). A quantitative review of the effects of traumatic brain injury on cognitive functioning. International Review of Psychiatry, 15(4), 341349. https://doi.org/10.1080/09540260310001606728 CrossRefGoogle Scholar
Sharp, D.J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156–66. https://doi.org/10.1038/nrneurol.2014.15 CrossRefGoogle Scholar
Spencer, T., Aldous, S., Williams, G., & Fahey, M. (2018). Systematic review of high-level mobility training in people with a neurological impairment. Brain Injury, 32(4), 403415.CrossRefGoogle Scholar
Spitz, G., Ponsford, J.L., Rudzki, D., & Maller, J.J. (2012). Association between cognitive performance and functional outcome following traumatic brain injury: A longitudinal multilevel examination. Neuropsychology, 26(5), 604612. https://doi.org/10.1037/a0029239 CrossRefGoogle Scholar
Surmeli, T., Ertem, A., Eralp, E., & Kos, I.H. (2012). Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: A clinical case series. Clinical EEG and Neuroscience, 43(2), 133144. https://doi.org/10.1177/1550059411429531 CrossRefGoogle Scholar
Tate, R.L., Perdices, M., Rosenkoetter, U., Shadish, W., Vohra, S., Barlow, D.H., Horner, R., Kazdin, A., Kratochwill, T., McDonald, S., Sampson, M., Shamseer, L., Togher, L., Albin, R., Backman, C., Douglas, J., Evans, J.J., Gast, D., Manolov, R., Mitchell, G., Nickels, L., Nikles, J., Ownsworth, T., Rose, M., Schmid, C.H., & Wilson, B. (2016). The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 statement. Remedial and Special Education, 37(6), 370380. https://doi.org/10.1177/0741932516652893 CrossRefGoogle Scholar
Thibault, R.T., Lifshitz, M., & Raz, A. (2016). The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex, 74, 247261. https://doi.org/10.1016/j.cortex.2015.10.024 CrossRefGoogle Scholar
Thibault, R.T. & Raz, A. (2016). When can neurofeedback join the clinical armamentarium? The Lancet Psychiatry, 3(6), 497498. https://doi.org/10.1016/S2215-0366(16)30040-2 CrossRefGoogle Scholar
Thibault, R.T. & Raz, A. (2017). The psychology of neurofeedback: Clinical intervention even if applied placebo. American Psychologist, 72(7), 679688. https://doi.org/10.1037/amp0000118 CrossRefGoogle Scholar
Thomas, J.L. & Smith, M.L. (2015). Neurofeedback for traumatic brain injury: Current trends. Biofeedback, 43(1), 3137. https://doi.org/10.5298/1081-5937-43.1.05 CrossRefGoogle Scholar
Thompson, M., Thompson, L., & Reid-Chung, A. (2015). Treating postconcussion syndrome with LORETA Z-score neurofeedback and heart rate variability biofeedback: Neuroanatomical/neurophysiological rationale, methods, and case examples. Biofeedback, 43(1), 1526. https://doi.org/10.5298/1081-5937-43.1.07 CrossRefGoogle Scholar
Thornton, K. (2000). Improvement/rehabilitation of memory functioning with neurotherapy/QEEG biofeedback. Health Psychology, 15(6), 113.Google Scholar
Thornton, K.E. & Carmody, D.P. (2013). The relation between memory improvement and QEEG changes in three clinical groups as a result of EEG biofeedback treatment. Journal of Neurotherapy, 17(2), 116131. https://doi.org/10.1080/10874208.2013.785183 CrossRefGoogle Scholar
Van Dam, N.T., van Vugt, M.K., Vago, D.R., Schmalzl, L., Saron, C.D., Olendzki, A., Meissner, T., Lazar, S.W., Kerr, C.E., Gorchov, J., Fox, K.C.R., Field, B.A., Britton, W.B., Brefczynski-Lewis, J.A., & Meyer, D.E. (2018). Mind the Hype: A critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspectives on Psychological Science, 13(1), 3661. https://doi.org/10.1177/1745691617709589 CrossRefGoogle Scholar
Van Den Broek, S.P., Reinders, F., Donderwinkel, M., & Peters, M.J. (1998). Volume conduction effects in EEG and MEG. Electroencephalography and Clinical Neurophysiology, 106(6), 522534. https://doi.org/10.1016/S0013-4694(97)00147-8 CrossRefGoogle Scholar
Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M.A., Strehl, U., & K Loo, S. (2018). Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. European Child & Adolescent Psychiatry, 28(3), 293305. https://doi.org/10.1007/s00787-018-1121-4 CrossRefGoogle Scholar
Vanderbeken, I. & Kerckhofs, E. (2017). A systematic review of the effect of physical exercise on cognition in stroke and traumatic brain injury patients. NeuroRehabilitation, 40, 3348.CrossRefGoogle Scholar
Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214227. https://doi.org/10.1080/10874200903334397 CrossRefGoogle Scholar
Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 7585. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12543448&retmode=ref&cmd=prlinks CrossRefGoogle Scholar
Whyte, J., Dijkers, M. P., Hart, T., Zanca, J. M., Packel, A., Ferraro, M., & Tsaousides, T. (2014). Development of a theory-driven rehabilitation taxonomy: Conceptual issues. Archives of Physical Medicine and Rehabilitation, 95(1 Suppl 1), S2432.CrossRefGoogle Scholar
Whyte, J. & Hart, T. (2003). It’s more than a black box; it’s a Russian doll: Defining rehabilitation treatments. American Journal of Physical Medicine & Rehabilitation, 82(8), 639652.CrossRefGoogle Scholar
Wood, G., Kober, S.E., Witte, M., & Neuper, C. (2014). On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Frontiers in Systems Neuroscience, 8(September), 14. https://doi.org/10.3389/fnsys.2014.00171 CrossRefGoogle Scholar
Zilverstand, A., Sorger, B., Sarkheil, P., & Goebel, R. (2015). fMRI neurofeedback facilitates anxiety regulation in females with spider phobia. Frontiers in Behavioral Neuroscience, 9, 148. https://doi.org/10.3389/fnbeh.2015.00148 CrossRefGoogle Scholar