Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T21:30:33.414Z Has data issue: false hasContentIssue false

Examining Gender Differences in Neurocognitive Functioning Across Adulthood

Published online by Cambridge University Press:  05 August 2019

Karen L. Siedlecki*
Affiliation:
Department of Psychology, Fordham University, Bronx, NY, 10458, USA
Francesca Falzarano
Affiliation:
Department of Psychology, Fordham University, Bronx, NY, 10458, USA
Timothy A. Salthouse
Affiliation:
Department of Psychology, University of Virginia, Charlottesville, VA, 22904, USA
*
*Correspondence and reprint requests to: Karen L. Siedlecki, Department of Psychology, Fordham University, 113 W. 60th Street, New York, NY 10023, USA. E-mail: klsiedlecki@fordham.edu

Abstract

Objective:

Previous research has shown that women have an advantage on verbal episodic memory and processing speed tasks, while men show an advantage on spatial ability measures. Previous work has also found differences in cognition across age. The current study examines gender differences in neurocognitive functioning across adulthood, whether age moderates this effect, and whether these differences remain consistent with practice across multiple testing sessions.

Method:

Data from the Virginia Cognitive Aging Project were used, which included participants between the ages of 18 and 99 years (N = 5125). Participants completed measures assessing five cognitive domains: episodic memory, processing speed, reasoning, spatial visualization, and vocabulary.

Results:

Results showed that gender was significantly related to memory, speed, and spatial visualization, but not to vocabulary or reasoning. Results of invariance analyses across men and women provided evidence of configural and metric invariance, along with partial scalar invariance. Additionally, there was little evidence that age or practice influenced the gender effect on neurocognition.

Conclusions:

Consistent with the previous research, these results suggest that there is a female advantage in episodic memory and processing speed, and a male advantage in spatial visualization. Gender was shown to influence cognition similarly across adulthood. Furthermore, the influence of gender remained the same across three sessions, which is consistent with the previous work that has shown that training does not differentially impact performance on spatial ability measures for females compared to males.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arbuckle, J.L. (2015). Amos (Version 24.0) [Computer Program]. Chicago, IL: IBM SPSS.Google Scholar
Baenninger, M. & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5–6), 327344. doi: 10.1007/BF00287729.CrossRefGoogle Scholar
Bennett, G.K., Seashore, H.G., & Wesman, A.G. (1997). Differential aptitude test. San Antonio, TX: Psychological Corporation.Google Scholar
Berenbaum, S.A. & Resnick, S.M. (2007). The seeds of career choices: Prenatal sex hormone effects on psychological sex differences, In S.Ceci, J. & W.Williams, M. (Eds.), Why aren’t more women in science? (pp. 147157). Washington DC: APA Books.Google Scholar
Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355, 389391.CrossRefGoogle ScholarPubMed
Borella, E., Meneghetti, C., Ronconi, L., & De Beni, R. (2014). Spatial abilities across the adult life span. Developmental Psychology, 50, 384392. doi: 10.1037/a0033818.CrossRefGoogle ScholarPubMed
Brooks, C. & Bolzendahl, C. (2004). The transformation of U.S. gender role attitudes: cohort replacement, social-structural change, and ideological learning. Social Science Research, 33, 106133.CrossRefGoogle Scholar
Browne, M.W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.Bollen, A. & J.Long, S. (Eds.), Testing structural equation models (pp. 445455). Newbury Park, CA: Sage.Google Scholar
Cadinu, M., Maas, A., Rosablanca, A., & Kiesner, J. (2005). Why do women underperform under stereotype threat? Evidence for the role of negative thinking. Psychological Science, 16, 572578. doi: 10.1111/j.0956-7976.2005.01577.x.CrossRefGoogle ScholarPubMed
Camarata, S. & Woodcock, R. (2006). Sex differences in processing speed: Developmental effects in males and females. Intelligence, 34, 231252. doi: 10.1016/j.intell.2005.12.001.CrossRefGoogle Scholar
Cheung, G.W. & Rensvold, R.B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9, 233255. doi: 10.1207/s15328007sem0902_5.CrossRefGoogle Scholar
Cotter, D., Hermsen, J.M., & Vanneman, R. (2011). The end of the gender revolution? Gender role attitudes from 1977 to 2008. American Journal of Sociology, 117, 259289.CrossRefGoogle ScholarPubMed
Cvencek, D., Meltzoff, A.N., & Greenwald, A.G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82, 766779. doi: 10.1111/j.1467-8624.2010.01529.x.CrossRefGoogle ScholarPubMed
Daseking, M., Petermann, F., & Waldmann, H-C. (2017). Sex differences in cognitive abilities: Analyses for the German WAIS-IV. Personality and Individual Differences, 114, 145150. doi: 10.1016/j.paid.2017.04.003.CrossRefGoogle Scholar
England, P. (2010). The gender revolution uneven and stalled. Gender & Society, 24, 149166. doi: 10.1177/0891243210361475.CrossRefGoogle Scholar
Ekstrom, R.B., French, J.W., Harman, H.H., & Dermen, D. (1976). Manual for Kit of Factor-Referenced Cognitive Tests. Princeton, NJ: Educational Testing Service.Google Scholar
Fennema, E. & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American Educational Research Journal, 14(1), 5171. doi: 10.2307/1162519.CrossRefGoogle Scholar
Halpern, D.F. (2011). Sex Differences in Cognitive Abilities (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
Halpern, D.F., Benbow, C.P., Geary, D.C., Gur, R.C., Hyde, J.S., & Gernsbacher, M.A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 151. doi: 10.1111/j.1529-1006.2007.00032.x.CrossRefGoogle ScholarPubMed
Halpern, D.F. & LaMay, M.L. (2000). The smarter sex: A critical review of sex differences in intelligence. Educational Psychology Review, 12(2), 229246.CrossRefGoogle Scholar
Herlitz, A., Airaksinen, E., & Nordström, E. (1999). Sex differences in episodic memory: The impact of verbal and visuospatial ability. Neuropsychology, 13, 590597. doi: 10.1037/0894-4105.13.4.590.CrossRefGoogle ScholarPubMed
Herlitz, A., Nilsson, L.-G., & Backman, L. (1997). Gender differences in episodic memory. Memory and Cognition, 25, 801811. doi: 10.3758/BF03211324.CrossRefGoogle ScholarPubMed
Horn, J.L. & McArdle, J.J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18, 117144.CrossRefGoogle ScholarPubMed
Hu, L.-T. & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 155. doi: 10.1080/10705519909540118.CrossRefGoogle Scholar
Irwing, P. (2012). Sex differences in g: An analysis of the US standardization sample of the WAIS-III. Personality and Individual Differences, 53, 126131. doi: 10.1016/j.paid.2011.05.001.CrossRefGoogle Scholar
Johnson, W. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32(1), 95107. doi: 10.1016/S0160-2896(03)00062-X.CrossRefGoogle Scholar
Johnson, W., Carothers, A., & Deary, I.J. (2009). A role for the X chromosome in sex differences in variability in general intelligence? Perspectives on Psychological Science, 4(6), 598611. doi: 10.1111/j.1745-6924.2009.01168.x.CrossRefGoogle ScholarPubMed
Jones, M.G. & Wheatley, J. (1990). Gender differences in teacher-student interactions in science classrooms. Journal of Research in Science Teaching, 27(9), 861874. doi: 10.1002/tea.3660270906.CrossRefGoogle Scholar
Lange, R.L., Chelune, G.J., Taylor, M.J., Woodward, T.S., & Heaton, R.K. (2006). Development of demographic norms for four new WAIS-III/WMS-III indexes. Psychological Assessment, 18, 174181. doi: 10.1037/1040-3590.18.2.174.CrossRefGoogle ScholarPubMed
Lundervold, A.J., Wollshlaeager, D., & Wehling, E. (2014). Age and sex related changes in episodic memory function in middle aged and older adults. Scandinavian Journal of Psychology, 55, 225232. doi: 10.1111/sjop.12114.CrossRefGoogle ScholarPubMed
Lynn, R. (1994). Sex differences in intelligence and brain size: A paradox resolved. Personality and Individual Differences, 17, 257271. doi: 10.1016/0191-8869(94)90030-2.CrossRefGoogle Scholar
Lynn, R. (1999). Sex differences in intelligence and brain size: a developmental theory. Intelligence, 27, 112. doi: 10.1016/S0160-2896(99)00009-4.CrossRefGoogle Scholar
Maeda, Y. & Yoon, S.Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25, 6994. doi: 10.1007/s10648-012-9215-x.CrossRefGoogle Scholar
McCarrey, A.C., An, Y., Kitner-Triolo, M.H., Ferrucci, L., & Resnick, S.M. (2016). Sex differences in cognitive trajectories in clinically normal older adults. Psychology and Aging, 31, 166175. doi: 10.1037/pag0000070.CrossRefGoogle ScholarPubMed
Millsap, R.E. & Kwok, O.-M. (2004). Evaluating the impact of partial factorial invariance on selection in two populations. Psychological Methods, 9, 93115. doi: 10.1037/1082-989X.9.1.9.CrossRefGoogle ScholarPubMed
Perales, F., Lersch, P.M., & Baxter, J. (2019). Birth cohort, ageing and gender ideology: Lessons from British panel data. Social Science Research, 79, 85100. doi: 10.1019/j.ssresearch.2018.11.003.CrossRefGoogle ScholarPubMed
Priess, H.A. & Hyde, J.S. (2010). Gender and academic abilities and preferences. In Chrisler, J.C. & McCreary, D.R. (Eds.), Handbook of gender research in psychology. New York, NY: Springer Science+Business Media, LLC. doi: 10.1007/978-1-4419-1465-1_15.Google Scholar
Raven, J. (1962). Advanced progressive matrices, Set II. London: Lewis.Google Scholar
Reilly, D., Neumann, D.L., & Andrews, G. (2016). Sex and sex-role differences in specific cognitive abilities. Intelligence, 54, 147158. doi: 10.1016/j.intell.2015.12.004.CrossRefGoogle Scholar
Reilly, D., Neumann, D.L., & Andrews, G. (2017). Gender differences in spatial ability: Implications for STEM education and approaches to reducing the gender gap for parents and educators. In Khine, M.S. (Ed.), Visual-spatial ability: Transforming research into practice (pp. 195224). Switzerland: Springer International. doi: 10.1007/978-3-319-44385-0_10.CrossRefGoogle Scholar
Saggino, A., Pezzuti, L., Tommasi, M., Cianci, L., Colom, R., & Orsini, A. (2014). Null sex differences in general intelligence among elderly. Personality and Individual Differences, 63, 5357. doi: 10.1016/j.paid.2014.01.047.CrossRefGoogle Scholar
Salthouse, T.A. (1993). Speed and knowledge as determinants of adult age differences in verbal tasks. Journal of Gerontology: Psychological Sciences, 48, P29P36. doi: 10.1037/0278-7393.20.6.1486.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2004a). Localizing age-related individual differences in a hierarchical structure. Intelligence, 32, 541561. doi: 10.1016/j.intell.2004.07.003.CrossRefGoogle Scholar
Salthouse, T.A. (2004b). What and when of cognitive aging. Current Directions in Psychological Science, 13, 140144. doi: 10.1111/j.0963-7214.2004.00293.x.CrossRefGoogle Scholar
Salthouse, T.A. (2014a). Quantity and structure of word knowledge across adulthood. Intelligence, 46, 122130. doi: 10.1016/j.intell.2014.05.009.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2014b). Correlates of cognitive change. Journal of Experimental Psychology: General, 143, 10261048. doi: 10.1037/a0034847.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2019). Trajectories of normal cognitive aging. Psychology and Aging, 34, 1724. doi: 10.1037/pag0000288.CrossRefGoogle ScholarPubMed
Salthouse, T.A. & Babcock, R.L. (1991). Decomposing adult age differences in working memory. Developmental Psychology, 27, 763776. doi: 10.1037/0012-1649.27.5.763.CrossRefGoogle Scholar
Salthouse, T.A., Babcock, R.L., Skovronek, E., Mitchell, D.R.D., & Palmon, R. (1990). Age and experience effects in spatial visualization. Developmental Psychology, 26, 128136. doi: 10.1037/0012-1649.26.1.128.CrossRefGoogle Scholar
Salthouse, T.A. & Ferrer-Caja, E. (2003). What needs to be explained to account for age-related effects on multiple cognitive variables? Psychology and Aging, 18, 91110. doi: 10.1037/0882-7974.18.1.91.CrossRefGoogle ScholarPubMed
Salthouse, T.A., Fristoe, N., & Rhee, S.H. (1996). How localized are age-related effects on neuropsychological measures? Neuropsychology, 10, 272285. doi: 10.1037/0894-4105.10.2.272.CrossRefGoogle Scholar
Savage-McGlynn, E. (2012). Sex differences in intelligence in younger and older participants of the Raven’s Standard Progressive Matrices Plus. Personality and Individual Differences, 53, 137141. doi: 10.1016/j.paid.2011.06.013.CrossRefGoogle Scholar
Schaie, K.W. & Willis, S.L. (1993). Age difference patterns of psychometric intelligence in adulthood: Generalizability within and across ability domains. Psychology and Aging, 8, 4455. doi: 10.1037/0882-7974.8.1.44.CrossRefGoogle ScholarPubMed
Sherman, J.A. (1967). Problem of sex differences in space perception and aspects of intellectual functioning. Psychological Review, 74(4), 290299. doi: 10.1037/h0024723.CrossRefGoogle ScholarPubMed
Smiler, A.P. & Epstein, M. (2010). Measuring gender: Options and issues. In Chrisler, J.C. & McCreary, D.R. (Eds.), Handbook of gender research in psychology, vol 1: Gender research in general and experimental psychology (pp. 133157). New York, NY: Springer Science + Business Media.CrossRefGoogle Scholar
Steele, C.M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613629. doi: 10.1037/0003-066X.52.6.613.CrossRefGoogle ScholarPubMed
Techentin, C., Voyer, D., & Voyer, S.D. (2014). Spatial abilities and aging: A meta analysis. Experimental Aging Research, 40, 395425. doi: 10.1080/0361073X.2014.926773.CrossRefGoogle ScholarPubMed
Terlecki, M.S., Newcombe, N.S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 9961013. doi: 10.1002/acp.1420.CrossRefGoogle Scholar
Uttal, D.H., Meadow, N.G., Tipton, E., Hand, L.L., Alden, A.R., Warren, C., & Newcombe, N.S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352402. doi: 10.1037/a0028446.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997a). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1997b). Wechsler Memory Scale (3rd ed). San Antonio, TX: The Psychological Corporation.Google Scholar
Whitley, E., Deary, I., Ritchie, S.J., Batty, D., Kumari, M., & Benzeval, M. (2016) Variations in cognitive abilities across the life course: Cross-sectional evidence from Understanding Society: The UK Household Longitudinal Study. Intelligence, 59, 3950. doi: 10.1016/j.intell.2016.07.001.CrossRefGoogle ScholarPubMed
Woodcock, R.W. & Johnson, M.B. (1990). Woodcock–Johnson Psycho-educational Battery—Revised. Allen, TX: DLM.Google Scholar
Zachary, R.A. (1986). Shipley Institute of Living Scale—Revised. Los Angeles, CA: Western Psychological Services.Google Scholar
Zelinski, E.M., Gilewski, M.J., & Schaie, K.W. (1993). Individual differences in cross-sectional and 3-year longitudinal memory performance across the adult life span. Psychology and Aging, 8, 176186. doi: 10.1037/0882-7974.8.2.176.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Siedlecki et al. supplementary material

Siedlecki et al. supplementary material 1

Download Siedlecki et al. supplementary material(PDF)
PDF 41.2 KB