Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T08:06:11.758Z Has data issue: false hasContentIssue false

The Fate of the 0.5s: Predictors of 2-Year Outcome in Mild Cognitive Impairment

Published online by Cambridge University Press:  21 December 2010

Eleni Aretouli
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Ozioma C. Okonkwo
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Jaclyn Samek
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
Jason Brandt*
Affiliation:
Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland The Copper Ridge Institute, Sykesville, Maryland
*
Correspondence and reprint requests to: Jason Brandt, PhD, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, 600 N. Wolfe Street, Meyer 218, Baltimore, MD 21287-7218. E-mail: jbrandt1@jhmi.edu

Abstract

Impairments in executive cognition (EC) may be predictive of incident dementia in patients with mild cognitive impairment (MCI). The present study examined whether specific EC tests could predict which MCI individuals progress from a Clinical Dementia Rating (CDR) score of 0.5 to a score ≥1 over a 2-year period. Eighteen clinical and experimental EC measures were administered at baseline to 104 MCI patients (amnestic and non-amnestic, single- and multiple-domain) recruited from clinical and research settings. Demographic characteristics, screening cognitive measures and measures of everyday functioning at baseline were also considered as potential predictors. Over the 2-year period, 18% of the MCI individuals progressed to CDR ≥ 1, 73.1% remained stable (CDR = 0.5), and 4.5% reverted to normal (CDR = 0). Multiple-domain MCI participants had higher rates of progression to dementia than single-domain, but amnestic and non-amnestic MCIs had similar rates of conversion. Only three EC measures were predictive of subsequent cognitive and functional decline at the univariate level, but they failed to independently predict progression to dementia after adjusting for demographic, other cognitive characteristics, and measures of everyday functioning. Decline over 2 years was best predicted by informant ratings of subtle functional impairments and lower baseline scores on memory, category fluency, and constructional praxis. (JINS, 2011, 17, 277–288)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aisen, P.S. (2008). Treatment for MCI: Is the evidence sufficient? Neurology, 70(22), 20202021.CrossRefGoogle ScholarPubMed
Albert, M.S., Moss, M.B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7(5), 631639.CrossRefGoogle ScholarPubMed
Alexopoulos, P., Grimmer, T., Perneczky, R., Domes, G., Kurz, A. (2006a). Do all patients with mild cognitive impairment progress to dementia? Journal of the American Geriatric Society, 54(6), 10081010.CrossRefGoogle Scholar
Alexopoulos, P., Grimmer, T., Perneczky, R., Domes, G., Kurz, A. (2006b). Progression to dementia in clinical subtypes of mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(1), 2734.CrossRefGoogle ScholarPubMed
Amieva, H., Letenneur, L., Dartigues, J.F., Rouch-Leroyer, I., Sourgen, C., D'Alchee-Biree, F., Fabrigoule, C. (2004). Annual rate and predictors of conversion to dementia in subjects presenting mild cognitive impairment criteria defined according to a population-based study. Dementia and Geriatric Cognitive Disorders, 18(1), 8793.CrossRefGoogle ScholarPubMed
Arnold, S.E., Hyman, B.T., Flory, J., Damasio, A.R., Van Hoesen, G.W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cerebral Cortex, 1(1), 103116.CrossRefGoogle ScholarPubMed
Baars, M.A., van Boxtel, M.P., Dijkstra, J.B., Visser, P.J., van den Akker, M., Verhey, F.R., Jolles, J. (2009). Predictive value of mild cognitive impairment for dementia. The influence of case definition and age. Dementia and Geriatric Cognitive Disorders, 27(2), 173181.CrossRefGoogle ScholarPubMed
Baldo, J.V., Schwartz, S., Wilkins, D., Dronkers, N.F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. Journal of the International Neuropsychological Society, 12(6), 896900.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., Anderson, S.W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428437.CrossRefGoogle ScholarPubMed
Belleville, S., Rouleau, N., Van der Linden, M. (2006). Use of the Hayling task to measure inhibition of prepotent responses in normal aging and Alzheimer's disease. Brain and Cognition, 62(2), 113119.CrossRefGoogle ScholarPubMed
Berg, L., McKeel, D.W. Jr., Miller, J.P., Baty, J., Morris, J.C. (1993). Neuropathological indexes of Alzheimer's disease in demented and nondemented persons aged 80 years and older. Archives of Neurology, 50(4), 349358.CrossRefGoogle ScholarPubMed
Bondi, M.W., Monsch, A.U., Galasko, D., Butters, N., Salmon, D.P., Delis, D.C. (1994). Preclinical cognitive markers of dementia of the Alzheimer type. Neuropsychology, 8(3), 374384.CrossRefGoogle Scholar
Bornstein, R.A. (1982). A factor analytic study of the construct validity of the Verbal Concept Attainment Test. Journal of Clinical Neuropsychology, 4(1), 4350.CrossRefGoogle ScholarPubMed
Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, M.S., Bandeen-Roche, K. (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology, 23(5), 607618.CrossRefGoogle ScholarPubMed
Brandt, J., Mellits, E.D., Rovner, B., Gordon, B., Selnes, O.A., Folstein, M.F. (1989). Relation of age at onset and duration of illness to cognitive functioning in Alzheimer's disease. Cognitive and Behavioral Neurology, 2(2), 93101.Google Scholar
Bravo, G., Hebert, R. (1997). Age- and education-specific reference values for the Mini-Mental and modified Mini-Mental State Examinations derived from a non-demented elderly population. International Journal of Geriatric Psychiatry, 12(10), 10081018.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Brugger, P., Monsch, A.U., Salmon, D.P., Butters, N. (1996). Random number generation in dementia of the Alzheimer type: A test of frontal executive functions. Neuropsychologia, 34(2), 97103.CrossRefGoogle ScholarPubMed
Burgess, P.W., Shallice, T. (1997). The Hayling and Brixton Tests manual. Bury St. Edmunds, England: Thames Valley Test Company Limited.Google Scholar
Caselli, R.J., Dueck, A.C., Osborne, D., Sabbagh, M.N., Connor, D.J., Ahern, G.L., Reiman, E.M. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. The New England Journal of Medicine, 361(3), 255263.CrossRefGoogle ScholarPubMed
Chen, P., Ratcliff, G., Belle, S.H., Cauley, J.A., DeKosky, S.T., Ganguli, M. (2000). Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology, 55(12), 18471853.CrossRefGoogle ScholarPubMed
Crowell, T.A., Luis, C.A., Vanderploeg, R.D., Schinka, J.A., Mullan, M. (2002). Memory patterns and executive functioning in mild cognitive impairment and Alzheimer's disease. Aging, Neuropsychology, and Cognition, 9(4), 288297.CrossRefGoogle Scholar
Crowley, K., Siegler, R.S. (1993). Flexible strategy use in young children's tic-tac-toe. Cognitive Science, 17(4), 531561.Google Scholar
Daly, E., Zaitchik, D., Copeland, M., Schmahmann, J., Gunther, J., Albert, M. (2000). Predicting conversion to Alzheimer disease using standardized clinical information. Archives of Neurology, 57(5), 675680.CrossRefGoogle ScholarPubMed
DeCarli, C., Mungas, D., Harvey, D., Reed, B., Weiner, M., Chui, H., Jagust, W. (2004). Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology, 63(2), 220227.CrossRefGoogle Scholar
Delis, D.C., Kaplan, E., Kramer, J.H. (2001). Delis-Kaplan Executive Function System examiner's manual. San Antonio, TX: Psychological Corporation.Google Scholar
Dickerson, B.C., Sperling, R.A., Hyman, B.T., Albert, M.S., Blacker, D. (2007). Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Archives of General Psychiatry, 64(12), 14431450.CrossRefGoogle ScholarPubMed
Doody, R.S., Ferris, S.H., Salloway, S., Sun, Y., Goldman, R., Watkins, W.E., Murthy, A.K. (2009). Donepezil treatment of patients with MCI: A 48-week randomized, placebo-controlled trial. Neurology, 72(18), 15551561.CrossRefGoogle ScholarPubMed
Elias, M.F., Beiser, A., Wolf, P.A., Au, R., White, R.F., D'Agostino, R.B. (2000). The preclinical phase of Alzheimer disease: A 22-year prospective study of the Framingham cohort. Archives of Neurology, 57(6), 808813.CrossRefGoogle ScholarPubMed
Farias, S.T., Mungas, D., Reed, B.R., Harvey, D., DeCarli, C. (2009). Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Archives of Neurology, 66(9), 11511157.CrossRefGoogle ScholarPubMed
Ferris, S.H., Aisen, P.S., Cummings, J., Galasko, D., Salmon, D.P., Schneider, L., Thal, L.J. (2006). ADCS Prevention Instrument Project: Overview and initial results. Alzheimer Disease and Associated Disorders, 20(4), S109S123.CrossRefGoogle ScholarPubMed
Fischer, P., Jungwirth, S., Zehetmayer, S., Weissgram, S., Hoenigschnabl, S., Gelpi, E., Tragl, K.H. (2007). Conversion from subtypes of mild cognitive impairment to Alzheimer dementia. Neurology, 68(4), 288291.CrossRefGoogle ScholarPubMed
Fisk, J.D., Merry, H.R., Rockwood, K. (2003). Variations in case definition affect prevalence but not outcomes of mild cognitive impairment. Neurology, 61(9), 11791184.CrossRefGoogle Scholar
Fisk, J.D., Rockwood, K. (2005). Outcomes of incident mild cognitive impairment in relation to case definition. Journal of Neurology, Neurosurgery, & Psychiatry, 76(8), 11751177.CrossRefGoogle ScholarPubMed
Galasko, D., Bennett, D.A., Sano, M., Marson, D., Kaye, J., Edland, S.D. (2006). ADCS Prevention Instrument Project: Assessment of instrumental activities of daily living for community-dwelling elderly individuals in dementia prevention clinical trials. Alzheimer Disease and Associated Disorders, 20(3), S152S169.CrossRefGoogle ScholarPubMed
Ganguli, M., Dodge, H.H., Shen, C., DeKosky, S.T. (2004). Mild cognitive impairment, amnestic type: An epidemiologic study. Neurology, 63(1), 115121.CrossRefGoogle ScholarPubMed
Goodglass, H., Kaplan, E. (1983). Boston Diagnostic Aphasia Examination. Philadelphia: Lea and Febiger.Google Scholar
Griffith, H.R., Belue, K., Sicola, A., Krzywanski, S., Zamrini, E., Harrell, L., Marson, D.C. (2003). Impaired financial abilities in mild cognitive impairment: A direct assessment approach. Neurology, 60(3), 449457.CrossRefGoogle ScholarPubMed
Grober, E., Hall, C.B., Lipton, R.B., Zonderman, A.B., Resnick, S.M., Kawas, C. (2008). Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer's disease. Journal of the International Neuropsychological Society, 14(2), 266278.CrossRefGoogle ScholarPubMed
Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Thal, L.J. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Archives of Neurology, 61(1), 5966.CrossRefGoogle ScholarPubMed
Guilford, J.P., Christensen, P.R., Merryfield, P.R., Wilson, R.C. (1978). Alternate uses, Form B, Form C; manual of instructions and interpretations. Orange, CA: Sheridan Psychological Services Inc.Google Scholar
Henry, J.D., Crawford, J.R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology, 18(2), 284295.CrossRefGoogle ScholarPubMed
Hodges, J.R., Erzinclioglu, S., Patterson, K. (2006). Evolution of cognitive deficits and conversion to dementia in patients with mild cognitive impairment: A very-long-term follow-up study. Dementia and Geriatric Cognitive Disorders, 21(5–6), 380391.CrossRefGoogle ScholarPubMed
Hodges, J.R., Salmon, D.P., Butters, N. (1992). Semantic memory impairment in Alzheimer's disease: Failure of access or degraded knowledge? Neuropsychologia, 30(4), 301314.CrossRefGoogle ScholarPubMed
Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572.CrossRefGoogle ScholarPubMed
Jack, C.R. Jr., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Weiner, M.W. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685691.CrossRefGoogle Scholar
Jacobs, D.M., Marder, K., Cote, L.J., Sano, M., Stern, Y., Mayeux, R. (1995). Neuropsychological characteristics of preclinical dementia in Parkinson's disease. Neurology, 45(9), 16911696.CrossRefGoogle ScholarPubMed
Jacobs, D.M., Sano, M., Dooneief, G., Marder, K., Bell, K.L., Stern, Y. (1995). Neuropsychological detection and characterization of preclinical Alzheimer's disease. Neurology, 45(5), 957962.CrossRefGoogle ScholarPubMed
Jorm, A.F. (2001). History of depression as a risk factor for dementia: An updated review. Australian and New Zealand Journal of Psychiatry, 35(6), 776781.CrossRefGoogle ScholarPubMed
Jorm, A.F., Broe, G.A., Creasey, H., Sulway, M.R., Dent, O., Fairley, M.J., Tennant, C. (1996). Further data on the validity of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). International Journal of Geriatric Psychiatry, 11(2), 131139.3.0.CO;2-5>CrossRefGoogle Scholar
Jorm, A.F., Jacomb, P.A. (1989). The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Socio-demographic correlates, reliability, validity and some norms. Psychological Medicine, 19(4), 10151022.CrossRefGoogle ScholarPubMed
Koss, E., Patterson, M.B., Mack, J.L., Smyth, K.A., Whitehouse, P.J. (1998). Reliability and validity of the Tinkertoy Test in evaluating individuals with Alzheimer's disease. The Clinical Neuropsychologist, 12(3), 325329.CrossRefGoogle Scholar
Kryscio, R.J., Schmitt, F.A., Salazar, J.C., Mendiondo, M.S., Markesbery, W.R. (2006). Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology, 66(6), 828832.CrossRefGoogle ScholarPubMed
Larrieu, S., Letenneur, L., Orgogozo, J.M., Fabrigoule, C., Amieva, H., Le Carret, N., Dartigues, J.F. (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 59(10), 15941599.CrossRefGoogle Scholar
Lewis, M.S., Miller, L.S. (2007). Executive control functioning and functional ability in older adults. The Clinical Neuropsychologist, 21, 274285.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1982). The problem with assessing executive functions. International Journal of Psychology, 17, 281297.CrossRefGoogle Scholar
Loewenstein, D.A., Acevedo, A., Small, B.J., Agron, J., Crocco, E., Duara, R. (2009). Stability of different subtypes of mild cognitive impairment among the elderly over a 2- to 3-year follow-up period. Dementia and Geriatric Cognitive Disorders, 27(5), 418423.CrossRefGoogle Scholar
Lowery, N., Giovanni, L., Mozley, L.H., Arnold, S.E., Bilker, W.B., Gur, R.E., Moberg, P.J. (2003). Relationship between clock-drawing and neuropsychological and functional status in elderly institutionalized patients with schizophrenia. American Journal of Geriatric Psychiatry, 11(6), 621628.CrossRefGoogle ScholarPubMed
Lyketsos, C.G., Lopez, O., Jones, B., Fitzpatrick, A.L., Breitner, J., DeKosky, S. (2002). Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: Results from the Cardiovascular Health Study. Journal of the American Medical Association, 288(12), 14751483.CrossRefGoogle ScholarPubMed
Mahieux, F., Fenelon, G., Flahault, A., Manifacier, M.J., Michelet, D., Boller, F. (1998). Neuropsychological prediction of dementia in Parkinson's disease. Journal of Neurology, Neurosurgery, & Psychiatry, 64(2), 178183.CrossRefGoogle ScholarPubMed
Manly, J.J., Tang, M.X., Schupf, N., Stern, Y., Vonsattel, J.P., Mayeux, R. (2008). Frequency and course of mild cognitive impairment in a multiethnic community. Annals of Neurology, 63(4), 494506.CrossRefGoogle Scholar
Manning, K.J., Brandt, J. (2006, February). Completions and corrections as a test of executive control. International Neuropsychological Society, Boston, Massachusetts.Google Scholar
Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., Blennow, K. (2009). CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. Journal of the American Medical Association, 302(4), 385393.CrossRefGoogle ScholarPubMed
Mitchell, A., Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252265.CrossRefGoogle ScholarPubMed
Mitchell, J., Arnold, R., Dawson, K., Nestor, P.J., Hodges, J.R. (2009). Outcome in subgroups of mild cognitive impairment (MCI) is highly predictable using a simple algorithm. Journal of Neurology, 256(9), 15001509.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Morris, J.C. (1997). Clinical Dementia Rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(1), 173176; discussion 177–178.CrossRefGoogle ScholarPubMed
Morris, J.C., Cummings, J. (2005). Mild cognitive impairment (MCI) represents early-stage Alzheimer's disease. Journal of Alzheimer's Disease, 7(3), 235239.CrossRefGoogle ScholarPubMed
Nordlund, A., Rolstad, S., Klang, O., Edman, A., Hansen, S., Wallin, A. (2010). Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. Journal of Neurology, Neurosurgery, & Psychiatry, 81, 541546.CrossRefGoogle ScholarPubMed
Oulhaj, A., Wilcock, G.K., Smith, A.D., de Jager, C.A. (2009). Predicting the time of conversion to MCI in the elderly: Role of verbal expression and learning. Neurology, 73(18), 14361442.CrossRefGoogle ScholarPubMed
Peres, K., Chrysostome, V., Fabrigoule, C., Orgogozo, J.M., Dartigues, J.F., Barberger-Gateau, P. (2006). Restriction in complex activities of daily living in MCI: Impact on outcome. Neurology, 67(3), 461466.CrossRefGoogle ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303308.CrossRefGoogle ScholarPubMed
Petersen, R.C., Thomas, R.G., Grundman, M., Bennett, D., Doody, R., Ferris, S., The Alzheimer's Disease Cooperative Study Group (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine, 352(23), 23792388.CrossRefGoogle ScholarPubMed
Porteus, S.D. (1965). Porteus Maze Test. Fifty year's application. New York: Psychological Corporation.Google Scholar
Rapp, M.A., Reischies, F.M. (2005). Attention and executive control predict Alzheimer disease in late life: Results from the Berlin Aging Study (BASE). American Journal of Geriatric Psychiatry, 13(2), 134141.CrossRefGoogle ScholarPubMed
Rascovsky, K., Salmon, D.P., Hansen, L.A., Thal, L.J., Galasko, D. (2007). Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. Neuropsychology, 21(1), 2030.CrossRefGoogle ScholarPubMed
Rasquin, S.M., Lodder, J., Visser, P.J., Lousberg, R., Verhey, F.R. (2005). Predictive accuracy of MCI subtypes for Alzheimer's disease and vascular dementia in subjects with mild cognitive impairment: A 2-year follow-up study. Dementia and Geriatric Cognitive Disorders, 19(2–3), 113119.CrossRefGoogle ScholarPubMed
Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Mariani, E. (2006). Conversion of mild cognitive impairment to dementia: Predictive role of mild cognitive impairment subtypes and vascular risk factors. Dementia and Geriatric Cognitive Disorders, 21(1), 5158.CrossRefGoogle ScholarPubMed
Ravaglia, G., Forti, P., Montesi, F., Lucicesare, A., Pisacane, N., Rietti, E., Mecocci, P. (2008). Mild cognitive impairment: Epidemiology and dementia risk in an elderly Italian population. Journal of the American Geriatric Society, 56(1), 5158.CrossRefGoogle Scholar
Reitan, R.M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Riley, K.P., Snowdon, D.A., Desrosiers, M.F., Markesbery, W.R. (2005). Early life linguistic ability, late life cognitive function, and neuropathology: Findings from the Nun Study. Neurobiology of Aging, 26(3), 341347.CrossRefGoogle ScholarPubMed
Robertson, I.H., Ward, T., Ridgeway, V., Nimmo-Smith, I. (1994). The Test of Everyday Attention (TEA) manual. Bury St. Edmunds, England: Thames Valley Test Company.Google Scholar
Rouleau, I., Salmon, D.P., Butters, N., Kennedy, C., McGuire, K. (1992). Quantitative and qualitative analyses of clock drawings in Alzheimer's and Huntington's disease. Brain and Cognition, 18(1), 7087.CrossRefGoogle ScholarPubMed
Rozzini, L., Chilovi, B.V., Conti, M., Bertoletti, E., Delrio, I., Trabucchi, M., Padovani, A. (2007). Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. International Journal Geriatric Psychiatry, 22(12), 12171222.CrossRefGoogle ScholarPubMed
Salthouse, T.A., Atkinson, T.M., Berish, D.E. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132(4), 566594.CrossRefGoogle ScholarPubMed
Schretlen, D., Bobholz, J.H., Brandt, J. (1996). Development and psychometric properties of the Brief Test of Attention. The Clinical Neuropsychologist, 10(1), 8089.CrossRefGoogle Scholar
Snowdon, D.A., Kemper, S.J., Mortimer, J.A., Greiner, L.H., Wekstein, D.R., Markesbery, W.R. (1996). Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: Findings from the Nun study. Journal of the American Medical Association, 275(7), 528532.CrossRefGoogle ScholarPubMed
Storandt, M., Grant, E.A., Miller, J.P., Morris, J.C. (2006). Longitudinal course and neuropathologic outcomes in original vs revised MCI and in pre-MCI. Neurology, 67(3), 467473.CrossRefGoogle ScholarPubMed
Thordike, R.L., Hagen, E.P., Sattler, J.M. (1986). The Stanford-Binet Intelligence Scale: Fourth edition. Guide for Administration and Scoring. Chicago, IL: Riverside Publishing Company.Google Scholar
Tierney, M.C., Szalai, J.P., Snow, W.G., Fisher, R.H., Nores, A., Nadon, G., George-Hyslop, P.H.S. (1996). Prediction of probable Alzheimer's disease in memory-impaired patients: A prospective longitudinal study. Neurology, 46(3), 661665.CrossRefGoogle ScholarPubMed
Visser, P.J., Kester, A., Jolles, J., Verhey, F. (2006). Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology, 67(7), 12011207.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Weschler Memory Scale-Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Wilson, B.A., Alderman, N., Burgess, P., Emslie, H., Evans, J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Bury St. Edmunds: Thames Valley Test Co.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Petersen, R.C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246.CrossRefGoogle Scholar
Woods, S.P., Troster, A.I. (2003). Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson's disease. Journal of the International Neuropsychological Society, 9(1), 1724.CrossRefGoogle ScholarPubMed
Yaffe, K., Petersen, R.C., Lindquist, K., Kramer, J., Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dementia and Geriatric Cognitive Disorders, 22(4), 312319.CrossRefGoogle ScholarPubMed
Yesavage, J., Hoblyn, J., Friedman, L., Mumenthaler, M., Schneider, B., O'Hara, R. (2007). Should one use medications in combination with cognitive training? If so, which ones? Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(1), 1118.CrossRefGoogle ScholarPubMed
Zhang, Y., Han, B., Verhaeghen, P., Nilsson, L.G. (2007). Executive functioning in older adults with mild cognitive impairment: MCI has effects on planning, but not on inhibition. Aging, Neuropsychology, and Cognition, 14(6), 557570.CrossRefGoogle Scholar