Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T22:51:30.064Z Has data issue: false hasContentIssue false

Functions of the Frontal Lobes: Relation to Executive Functions

Published online by Cambridge University Press:  24 May 2011

Donald T. Stuss*
Affiliation:
Ontario Brain Institute, Rotman Research Institute of Baycrest, University of Toronto, Toronto, Ontario, Canada
*
Correspondence and reprint requests to: Donald T. Stuss, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1. E-mail: dstuss@rotman-baycrest.on.ca

Abstract

Proceeding from the assumptions that specific frontal regions control discrete functions and that very basic cognitive processes can be systematically manipulated to reveal those functions, recent reports have demonstrated consistent anatomical/functional relationships: dorsomedial for energization, left dorsolateral for task setting, and right dorsolateral for monitoring. There is no central executive. There are, instead, numerous domain general processes discretely distributed across several frontal regions that act in concert to accomplish control. Beyond these functions, there are two additional “frontal” anatomical/functional relationships: ventral–medial/orbital for emotional and behavioral regulation, and frontopolar for integrative—even meta-cognitive—functions. (JINS, 2011, 17, 759–765)

Type
Short Review
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, M.P. (2006). Impairments of procedures for implementing complex language are due to disruption of frontal attention processes. Journal of the International Neuropsychological Society, 12, 236247.CrossRefGoogle ScholarPubMed
Alexander, G.E., Delong, M.R., Strick, P.I. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Alexander, M.P., Gillingham, S., Schweizer, T.A., Stuss, D.T. (in press). Adults with chronic cerebellar lesions have only modest cognitive impairments. Cortex.Google Scholar
Alexander, M.P., Stuss, D.T., Gillingham, S. (2009). Impaired list learning is not a general property of frontal lesions. Journal of Cognitive Neuroscience, 21, 14221434.CrossRefGoogle Scholar
Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 15151523.CrossRefGoogle ScholarPubMed
Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572579.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Damasio, A.R., Lee, G.P. (1999). Different contributions of the human amygdale and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19, 54735481.CrossRefGoogle Scholar
Brass, M., von Cramon, D.Y. (2004). Selection for cognitive control: A functional magnetic resonance imaging study on the selection of task-relevant information. Journal of Neuroscience, 24, 88478852.CrossRefGoogle Scholar
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classification and Regression Trees (CART). Belmont, CA: Wadsworth.Google Scholar
Burgess, P.W., Gilbert, S.J., Dumontheil, I. (2007). Function and localisation within rostral prefrontal cortex (area 10). Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 887899.CrossRefGoogle ScholarPubMed
Cicerone, K., Levin, H., Malec, J., Stuss, D., Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 18, 12121222.CrossRefGoogle ScholarPubMed
Floden, D., Vallesi, A., Stuss, D.T. (2011). Task Context and Frontal Lobe Activation in the Stroop Task. Journal of Cognitive Neuroscience, 23, 867879.CrossRefGoogle ScholarPubMed
Fuster, J.M. (2008). The prefrontal cortex. London: Academic Press.CrossRefGoogle Scholar
Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medical rostral prefrontal cortex: A meta-analysis. Neuroimage, 53, 13591367.CrossRefGoogle Scholar
Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J.-P., Rousseaux, M. (1999). Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex, 35, 120.CrossRefGoogle ScholarPubMed
Grafman, J. (2002). The structured event complex and the human prefrontal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 292310). New York: Oxford University Press.CrossRefGoogle Scholar
Haber, S.N., Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78, 6974.CrossRefGoogle Scholar
Heilman, K.M., Watson, R.T. (1977). The neglect syndrome – A unilateral defect of the orienting response. In S. Harnad, R.W. Doty, J. Jaynes, L. Goldstein, & G. Krauthamer, (Eds.), Lateralization in the nervous system (pp. 285302). New York: Academic Press.CrossRefGoogle Scholar
Knight, R.T. (1991). Evoked potential studies of attention capacity in human frontal lobe lesions. In H. Levin, H. Eisenberg, & F. Benton (Eds.), Frontal lobe functions and dysfunction (pp. 139153). Oxford: Oxford University Press.CrossRefGoogle Scholar
Koechlin, E., Basso, G., Pietrini, P., Panzer, S., Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148151.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
Levine, B., Turner, G.R., Stuss, D.T. (2008). Rehabilitation of frontal lobe functions. In D.T. Stuss, G. Winocur, & I.H. Robertson (Eds.), Cognitive neurorehabilitation, 2nd edition: Evidence and application (pp. 464486). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Luria, A.R. (1973). The working brain: An introduction to neuropsychology (B. Haigh, Trans). New York: Basic Books.Google Scholar
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125, 624639.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1985). Principles of behavioral neurology. Philadelphia: Davis.Google Scholar
Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., Kellam, S.G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2, 109145.CrossRefGoogle ScholarPubMed
Norman, D.A., Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R.J. Davidson, G.E. Shwartz, & D. Shapiro (Eds.), Attention to action: Willed and automatic control of behaviour (pp. 118). New York: Plenum.Google Scholar
Pandya, D.N., Yeterian, E.H. (1996). Comparison of prefrontal architecture and connections. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 351, 14231432.Google ScholarPubMed
Paus, T., Zatorre, R.J., Hofle, N., Caramanos, J.G., Petrides, M., Evans, A.C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9, 392408.CrossRefGoogle ScholarPubMed
Petrides, M., Pandya, D.M. (1994). Comparative architectonic analysis of the human and macaque frontal cortex. In F. Boller & J. Grafman (Eds.), Comparative architectonic analysis of the human and macaque frontal cortex (pp. 1757). Amsterdam: Elsevier.Google Scholar
Petrides, M., Pandya, D.M. (2007). Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. The Journal of Neuroscience, 27, 1157311586.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826838.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., Shallice, T., Alexander, M.P., Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 11951209.CrossRefGoogle ScholarPubMed
Posner, M.I., Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Schroeder, U., Kuehler, A., Lange, K.W., Haslinger, B., Tronnier, V.M., Krause, M., Ceballos-Baumann, A.O. (2003). Subthalamic nucleus stimulation affects a frontotemporal network: A PET study. Annals of Neurology, 54, 445450.CrossRefGoogle ScholarPubMed
Schweizer, T.A., Alexander, M.P., Gillingham, S., Cusimano, M., Stuss, D.T. (2010). Lateralized cerebellar contributions to word generations: A verbal and semantic fluency study. Behavioural Neurology, 23, 3137.CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 298, 199209.Google ScholarPubMed
Shallice, T., Burgess, P.W. (1996). Domains of supervisory control and the temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 351, 14051412.Google Scholar
Shallice, T., Stuss, D.T., Alexander, M.P., Picton, T.W., Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex, 44, 794805.CrossRefGoogle ScholarPubMed
Shallice, T., Stuss, D.T., Picton, T.W., Alexander, M.P., Gillingham, S. (2008). Multiple effects of prefrontal lesions on task-switching. Frontiers in Human Neuroscience, 1, 112.Google ScholarPubMed
Sturm, W., Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14, S76S84.CrossRefGoogle ScholarPubMed
Stuss, D.T. (2006). Frontal lobes and attention: Processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12, 261271.CrossRefGoogle ScholarPubMed
Stuss, D.T., Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 901915.CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Floden, D., Binns, M.A., Levine, B., McIntosh, A.R., Hevenor, S.J. (2002). Fractionation and localization of distinct frontal lobe processes: Evidence from focal lesions in humans. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 392407). New York: Oxford University Press.CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265278.CrossRefGoogle ScholarPubMed
Stuss, D.T., Alexander, M.P., Palumbo, C.L., Buckle, L., Sayer, L., Pogue, J. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355373.CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., Katz, D.I. (2005) Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396417.CrossRefGoogle ScholarPubMed
Stuss, D.T., Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
Stuss, D.T., Binns, M.A., Murphy, K.J., Alexander, M.P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500513.CrossRefGoogle ScholarPubMed
Stuss, D.T., Knight, R.T. (Eds.). (2002). Principles of frontal lobe function. New York: Oxford University Press.CrossRefGoogle Scholar
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388402.CrossRefGoogle ScholarPubMed
Stuss, D.T., Picton, T.W., Alexander, M.P. (2001). Consciousness, self-awareness, and the frontal lobes. In S.P. Salloway, P.F. Malloy, & J.D. Duffy (Eds.), The frontal lobes and neuropsychiatric illness (pp. 101109). Washington: American Psychiatric Publishing, Inc.Google Scholar
Stuss, D.T., Shallice, T., Alexander, M.P., Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191212.CrossRefGoogle ScholarPubMed
Vallesi, A., McIntosh, A.R., Alexander, M.P., Stuss, D.T. (2009). fMRI evidence of a functional network setting the criteria for withholding a response. Neuroimage, 45, 537548.CrossRefGoogle ScholarPubMed
Vallesi, A., McIntosh, A.R., Shallice, T., Stuss, D.T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 11161126.CrossRefGoogle ScholarPubMed
Wang, M., Ramos, B.P., Paspalas, C.D., Shu, Y., Simen, A., Dogue, A., Arnsten, A.F. (2007) A2A-Adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell, 129, 397410.CrossRefGoogle Scholar