Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:33:36.559Z Has data issue: false hasContentIssue false

Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology

Published online by Cambridge University Press:  01 November 2009

LISA DELANO-WOOD*
Affiliation:
Department of Psychiatry, School of Medicine, University of California–San Diego, La Jolla, California Psychology Service, VA San Diego Healthcare System, La Jolla, California
MARK W. BONDI
Affiliation:
Department of Psychiatry, School of Medicine, University of California–San Diego, La Jolla, California Psychology Service, VA San Diego Healthcare System, La Jolla, California
JOSHUA SACCO
Affiliation:
Deparment of Psychology, Michigan State University, East Lansing, Michigan
NORM ABELES
Affiliation:
Deparment of Psychology, Michigan State University, East Lansing, Michigan
AMY J. JAK
Affiliation:
Department of Psychiatry, School of Medicine, University of California–San Diego, La Jolla, California Psychology Service, VA San Diego Healthcare System, La Jolla, California
DAVID J. LIBON
Affiliation:
Department of Neurology, Drexel University, Philadelphia, Pennsylvania
ANDREA BOZOKI
Affiliation:
Department of Neurology, Michigan State University, East Lansing, Michigan
*
*Correspondence and reprint requests to: Lisa Delano-Wood, Ph.D., VA San Diego Healthcare System, Building 13 – 151B, 3350 La Jolla Village Drive, San Diego, CA 92161. E-mail: ldelano@ucsd.edu

Abstract

This study examined whether distinct neuropsychological profiles could be delineated in a sample with Mild Cognitive Impairment (MCI) and whether white matter lesion (WML) burden contributed to MCI group differences. A heterogeneous, clinical sample of 70 older adults diagnosed with MCI was assessed using cognitive scores, and WML was quantified using a semi-automated, volumetric approach on T2-weighted fluid-attenuated inversion recovery (FLAIR) images. Using cluster and discriminant analyses, three distinct groups (Memory/Language, Executive/Processing Speed, and Pure Memory) were empirically derived based on cognitive scores. Results also showed a dose dependent relationship of WML burden to MCI subgroup, with the Executive/Processing Speed subgroup demonstrating significantly higher levels of WML pathology when compared to the other subgroups. In addition, there was a dissociation of lesion type by the two most impaired subgroups (Memory/Language and Executive/Processing Speed) such that the Memory/Language subgroup showed higher periventricular lesion (PVL) and lower deep white matter lesion (DWML) volumes, whereas the Executive/Processing Speed demonstrated higher DWML and lower PVL volumes. Results demonstrate that distinct MCI subgroups can be empirically derived and reliably differentiated from a heterogeneous MCI sample, and that these profiles differ according to WML burden. Overall, findings suggest different underlying pathologies within MCI and contribute to our understanding of MCI subtypes. (JINS, 2009, 15, 906–914.)

Type
MCI Series
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bombois, S., Debette, S., Delbeuck, X., Bruandet, A., Lepoittevin, S., Delmaire, C., et al. . (2007). Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke, 38(90), 25952597.CrossRefGoogle ScholarPubMed
Bondi, M., Monsch, A., Galasko, D., Butters, N., Salmon, D., & Delis, D. (1994). Preclinical cognitive markers of dementia of the Alzheimer type. Neuropsychology, 8, 374384.CrossRefGoogle Scholar
Bondi, M.W., Salmon, D.P., Galasko, D., Thomas, R.G., & Thal, L.J. (1999). Neuropsychological function and apolipoprotein E genotype in the preclinical detection of Alzheimer’s disease. Psychology and Aging, 14(2), 295303.CrossRefGoogle ScholarPubMed
Bowler, J.V. (2002). The concept of vascular cognitive impairment. Journal of the Neurological Sciences, 203–204, 1115.CrossRefGoogle Scholar
Bowler, J.V., & Hachinski, V. (2003). Vascular cognitive impairment – A new concept. In Vascular cognitive impairment: Preventable dementia. New York: Oxford University Press.CrossRefGoogle Scholar
Busse, A., Bischkopf, J., Riedel-Heller, S.G., & Angermeyer, M.C. (2003). Subclassifications for mild cognitive impairment: Prevalence and predictive validity. Psychological Medicine, 33, 10291038.CrossRefGoogle ScholarPubMed
Busse, A., Hensel, A., Guhne, U., Angermeyer, M.C., & Riedel-Heller, S.G. (2006). Mild cognitive impairment: Long-term course of four clinical subtypes. Neurology, 67, 21762185.Google Scholar
Cabeza, R., Anderson, N.D., Locantore, J.K., & McIntosh, A.R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 17(3), 13941402.CrossRefGoogle ScholarPubMed
Chandler, M.J., Lacritz, L.H., Hynan, L.S., Barnard, H.D., Allen, G., Deschner, M., et al. . (2005). A total score for the CERAD neuropsychological battery. Neurology, 65(1), 102106.CrossRefGoogle ScholarPubMed
Collie, A., & Maruff, P. (2000). The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neuroscience and Biobehavioral Review, 24(3), 365374.CrossRefGoogle ScholarPubMed
Cummings, J.L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873880.CrossRefGoogle ScholarPubMed
Davis, H.S. & Rockwood, K. (2004). Conceptualization of mild cognitive impairment: A review. International Journal of Geriatric Psychiatry, 19(4), 313319.CrossRefGoogle ScholarPubMed
Delano-Wood, L., Abeles, N., Sacco, J., Wierenga, C.E., Horne, N.R., & Bozoki, A. (2008). Regional white matter pathology in mild cognitive impairment: Differential influence of lesion type on neuropsychological functioning. Stroke, 39, 794800.Google Scholar
De Carli, C. (2003). Mild cognitive impairment: Prevalence, prognosis, aetiology, and treatment. Lancet Neurology, 2(1), 1521.CrossRefGoogle ScholarPubMed
Delis, D., Kramer, J., Kaplan, E., & Ober, B. (2000). CVLT-II: California Verbal Learning Test (2nd ed.), Adult version. San Antonio, TX: The Psychological Corporation.Google Scholar
Fazekas, F., Schmidt, R., & Scheltens, P. (1998). Pathophysiologic mechanisms in the development of age-related white matter changes of the brain. Dementia and Geriatric Cognitive Disorders, 9(Suppl 1), 25.CrossRefGoogle ScholarPubMed
Fernando, M.S., Simpson, J.E., Matthews, F., Brayne, C., Lewis, C.E., Barber, R., et al. . (2006). White matter lesions in an unselected cohort of the elderly: Molecular pathology suggests origin from chronic hypoperfusion injury. Stroke, 37(6), 13911398.CrossRefGoogle Scholar
Fillenbaum, G.G., van Belle, G., Morris, J.C., Mohs, R.C., Mirra, S.S., Davis, P.C., et al. . (2008). Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): The first twenty years. Alzheimer’s & Dementia, 4, 96109.CrossRefGoogle ScholarPubMed
Garrett, K.D., Browndyke, J.N., Whelihan, W., Paul, R.H., DiCarlo, M., Moser, D.J., et al. . (2004). The neuropsychological profile of vascular cognitive impairment – no dementia: Comparisons to patients at risk for cerebrovascular disease and vascular dementia. Archives of Clinical Neuropsychology, 19(6), 745757.CrossRefGoogle ScholarPubMed
Golden, C.J., & Freshwater, S.M. (2002). The Stroop Color and Word Test: A manual for clinical and experimental uses. Chicago: Stoelting.Google Scholar
Gunning-Dixon, F.M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14(2), 224232.CrossRefGoogle ScholarPubMed
Hays, W.L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt Brace College Publishers.Google Scholar
Inzitari, D. (2000). Age-related white matter changes and cognitive impairment. Annals of Neurology, 47, 141143.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Kaufman, L., & Rousseau, P. (1990). Finding groups in data. New York: Wiley.CrossRefGoogle Scholar
Kavé, G., & Heinik, J. (2004). Neuropsychological evaluation of mild cognitive impairment: Three case reports. Clinical Neuropsychology, 18(3), 362372.CrossRefGoogle ScholarPubMed
Kleinbaum, D.G., Kupper, L.L., & Muller, K.E. (1988). Applied regression analysis and other multivariable methods. Boston: PWS-Kent Publishing.Google Scholar
Lazarus, R., Prettyman, R., & Cherryman, G. (2005). White matter lesions on magnetic resonance imaging and their relationship with vascular risk factors in memory clinic attenders. International Journal of Geriatric Psychiatry, 20, 274279.CrossRefGoogle ScholarPubMed
Libon, D.J., Xie, S.X., Moore, P., Farmer, J., Antani, S., McCawley, G., et al. . (2007). Patterns of neuropsychological impairment in frontotemporal dementia. Neurology, 68(5), 369375.CrossRefGoogle ScholarPubMed
Looi, J.C.L., & Sachdev, P.S. (2000a). Diagnosis and management of vascular dementia. Medicine Today, 1, 1624.Google Scholar
Loewenstein, D.A., Acevedo, A., Agron, J., Issacson, R., Strauman, S., Crocco, E., et al. . (2006). Cognitive profiles in Alzheimer’s disease and in mild cognitive impairment of different etiologies. Dementia and Geriatric Cognitive Disorders, 21(5–6), 309315.Google Scholar
Mickes, L., Wixted, J.T., Fennema-Notestine, C., Galasko, D., Bondi, M.W., Thal, L.J., Salmon, D.P. (2007). Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer’s disease. Neuropsychology, 21, 696705.CrossRefGoogle Scholar
Mortimer, J.A., Snowdon, D.A., & Markesbery, W.R. (2003). Head circumference, education and risk of dementia: Findings from the nun study. Journal of Clinical and Experimental Neuropsychology, 25(5), 671679.Google Scholar
Petersen, R.C. (2004a). MCI as a useful clinical concept. Geriatric Times, 5(1), 13.Google Scholar
Petersen, R.C. (2004b). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., et al. . (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 19851992.CrossRefGoogle ScholarPubMed
Petersen, R.C., & Morris, J.D. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62, 11601163.Google Scholar
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Powell, M.R., Smith, G.E., Knopman, D.S., Parisi, J.E., Boeve, B.F., Petersen, R.C., & Ivnik, R.J. (2006). Cognitive measures predict pathologic Alzheimer disease. Archives of Neurology, 63, 865868.CrossRefGoogle ScholarPubMed
Price, C., Schmalfuss, I., & Sistrom, C. (2005). Quantification of white matter alterations: A reliability analysis. Abstract presented at the International Neuropsychological Society.Google Scholar
Prins, N.D., van Dijk, E.J., den Heijer, T., Vermeer, S.E., Koudstaal, P.J., Oudkerk, M., et al. . (2004). Cerebral white matter lesions and the risk of dementia. Archives of Neurology, 61, 15311534.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K.M., & Acker, E.M. (2003). Hypertension and the brain: Vulnerability of prefrontal regions and executive functions. Behavioral Neuroscience, 117(6), 11691180.Google Scholar
Reitan, R.M., & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery: Theory and interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
Ritchie, K., & Touchon, J. (2000). Mild cognitive impairment: Conceptual basis and current nosological status. Lancet, 335, 225228.CrossRefGoogle Scholar
Rockwood, K., Davis, H., & MacKnight, C., Vandorpe, R., Gauthier, S., Guzman, A., et al. . (2003). The Consortium to Investigate Vascular Impairment of Cognition: Methods and first findings. Canadian Journal of Neurological Science, 30, 237243.Google Scholar
Rubin, E.H., Storandt, M., Miller, J.P., Kinscherf, D.A., Grant, E.A., Morris, J.C., & Berg, L. (1998). A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Archives of Neurology, 55(3), 395401.CrossRefGoogle ScholarPubMed
Salmon, D.P., Thomas, R.G., Pay, M.M., Booth, A., Hofstetter, C.R., Thal, L.J., & Katzman, R. (2002). Alzheimer’s disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59, 10221028.Google Scholar
Selnes, O.A., & Vinters, H.V. (2006). Vascular cognitive impairment. Nature Clinical Practice Neurology, 2, 538547.CrossRefGoogle ScholarPubMed
Schmidtke, K., & Hermeneit, S. (2007). High rate of conversion of Alzheimer’s disease in a cohort of amnestic MCI patients. International Psychogeriatrics, 116, 114.Google Scholar
Shinkawa, A., Ueda, K., Kiyohara, Y., Kato, I., Sueishi, K., Tsuneyoshi, M., & Fujishima, M. (1995). Silent cerebral infarction in a community-based autopsy series in Japan. Stroke, 26, 380385.CrossRefGoogle Scholar
Simpson, J.E., Ince, P.G., Higham, C.E., Gelsthorpe, C.H., Fernando, M.S., Matthews, F., et al. . (2007). Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathology and Applied Neurobiology, 33(6), 670683.Google Scholar
Stephens, S., Kenny, R.A., Rowan, E., Allan, L., Kalaria, R.N., Bradbury, M., & Ballard, C.G. (2004). Neuropsychological characteristics of mild vascular cognitive impairment and dementia after stroke. International Journal of Geriatric Psychiatry, 19(11), 10531057.Google Scholar
Storandt, M., Grant, E.A., Miller, J.P., & Morris, J.C. (2006). Longitudinal course and neuropathologic outcomes in original vs. revised MCI and in pre-MCI. Neurology, 67(3), 467473.Google Scholar
Testa, J.A., Ivnik, R.J., Boeve, B., Petersen, R.C., Pankratz, V.S., Knopman, D., et al. . (2004). Confrontation naming does not add incremental diagnostic utility in MCI and Alzheimer’s disease. Journal of the International Neuropsychological Society, 10(4), 504512.CrossRefGoogle Scholar
Thomas, A.J., O’Brien, J.T., Davis, S., Ballard, C., Barber, R., Kalaria, R.N.,Perry, R.H. (2002). Ischemic basis for deep white matter hyperintensities in major depression. A neuropathological study. Archives of General Psychiatry, 59, 785792.CrossRefGoogle ScholarPubMed
Tomimoto, H., Ihara, M., Wakita, H., Ohtani, R., Lin, J.X., Akiguchi, I., et al. . (2003). Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathology, 106(6), 527534.CrossRefGoogle ScholarPubMed
Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 13941413.CrossRefGoogle ScholarPubMed
Vataja, R., Pohjasvaara, T., Mantyla, R., Ylikoski, R., Leppavuori, A., Leskela, M., et al. . (2003). MRI correlates of executive dysfunction in patients with ischaemic stroke. European Journal of Neurology, 10(6), 625631.Google Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 77, 841847.Google Scholar
Welsh, K., Butters, N., & Mohs, R.C. (1994). CERAD Part V: A normative study of the neuropsychological battery. Neurology, 44, 609614.CrossRefGoogle Scholar
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M.B., & Leirer, V.O. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatry Research, 17, 3749.CrossRefGoogle Scholar
Zanetti, M., Ballabio, C., Abbate, C., Cutaia, C., Vergani, C., & Bergamaschini, L. (2006). Mild cognitive impairment subtypes and vascular dementia in community-dwelling elderly people: A 3-year follow-up study. Journal of the American Geriatric Society, 54(4), 580586.CrossRefGoogle ScholarPubMed