Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:19:51.344Z Has data issue: false hasContentIssue false

Isolating Cognitive and Neurologic HIV Effects in Substance-Dependent, Confounded Cohorts: A Pilot Study

Published online by Cambridge University Press:  28 February 2013

Desiree A. Byrd*
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Jessica Robinson-Papp
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Monica Rivera Mindt
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York Department of Psychology, Fordham University, New York, New York
Letty Mintz
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Kathryn Elliott
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
Quenesha Lighty
Affiliation:
Department of Psychology, the City University of New York, New York, New York
Susan Morgello
Affiliation:
Department of Neurology, Mount Sinai School of Medicine, New York, New York
*
Correspondence and reprint requests to: Desiree A. Byrd, Department of Neurology, Box 1052, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029. E-mail: desiree.byrd@mssm.edu

Abstract

Controversy exists as to whether effects of HIV infection can be detected in the cognitive profiles of substance users, with methodological differences in degree of control for confounding factors a major contributor to empirical discrepancies. To address this shortcoming, we conducted a small but well-controlled study aimed at isolating HIV neurocognitive (NC) effects in a group of chronic substance users. Thirty HIV-negative substance users were individually matched to 30 HIV-positive substance users on relevant medical and demographic factors, including reading level and methadone therapy status. Results revealed that reading level, methadone maintenance therapy, and positive urine toxicology each exerted significant influence on NC function, and that HIV status was a significant predictor of learning and speeded processing after these control factors were considered. The HIV-positive group also displayed significantly more neurologically assessed motor impairment (p < .05), which was specifically related to impaired cognition in this group and independent of degree of immunocompromise. These data demonstrate the need for increased attention to clinical/demographic characteristics of groups under study. They also show that with applied methodological rigor, the deleterious effects of HIV on cognition can be parsed from substance use, even in small samples with chronic and active use histories. (JINS, 2013, 19, 1–11)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldewicz, T.T., Leserman, J., Silva, S.G., Petitto, J., Golden, R.N., Perkins, D.O., Evans, D.L. (2004). Changes in neuropsychological functioning with progression of HIV-1 infection: Results of an 8-year longitudinal investigation. AIDS and Behavior, 8(3), 345355.CrossRefGoogle ScholarPubMed
Basso, M., Bronstein, R. (2000). Neurobehavioural consequences of substance abuse and HIV infection. Psychopharmacology, 14(3), 228237.CrossRefGoogle ScholarPubMed
Basso, M., Bronstein, R. (2003). Effects of past noninjection drug abuse upon executive function and working memory in HIV infection. Journal of Clinical and Experimental Neuropsychology, 25(7), 893903.CrossRefGoogle ScholarPubMed
Bell, J., Arango, J., Anthony, I. (2006). Neurobiology of multiple insults: HIV-1-associated brain disorders in those who use illicit drugs. Journal of Neuroimmune Pharmacology, 1(2), 182191.CrossRefGoogle ScholarPubMed
Bell, J.E., Brettle, R.P., Chiswick, A.A., Simmonds, P.P. (1998). HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS: Effect of neocortical involvement. Brain, 121(11), 20432052.CrossRefGoogle ScholarPubMed
Bing, E., Burnam, M., Longshore, D., Fleishman, J., Sherbourne, C., London, A., Shapiro, M. (2001). Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Archives of General Psychiatry, 58(8), 721728.CrossRefGoogle ScholarPubMed
Brown, E., Prager, J., Lee, H., Ramsey, R. (1992). CNS complications of cocaine abuse: Prevalence, pathophysiology, and neuroradiology. AJR American Journal of Roentgenology, 159(1), 137147.CrossRefGoogle ScholarPubMed
Burnam, M., Bing, E., Morton, S., Sherbourne, C., Fleishman, J., London, A., Shapiro, M. (2001). Use of mental health and substance abuse treatment services among adults with HIV in the United States. Archives of General Psychiatry, 58(8), 729736.CrossRefGoogle ScholarPubMed
Buttner, A. (2011). Review: The neuropathology of drug abuse. Neuropathology and Applied Neurobiology, 37(2), 118134.CrossRefGoogle ScholarPubMed
Byrd, D., Fellows, R., Morgello, S., Franklin, D., Heaton, R., Deutsch, R., Grant, I. (2011). Neurocognitive impact of substance use in HIV infection. Journal of Acquired Immune Deficiency Syndromes, 58(2), 154162.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC) (2007). HIV prevalence among selected populations: High-risk populations. Retrieved from CDC Website: http://www.cdc.gov/hiv/topics/testing/resources/reports/hiv_prevalence/high-risk.htm.Google Scholar
Chana, G., Everall, I., Crews, L., Langford, D., Adame, A., Grant, I., Masliah, E. (2006). Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Neurology, 67(8), 14861489.CrossRefGoogle ScholarPubMed
Concha, M., Graham, N., Muñoz, A., Vlahov, D., Royal, W., Updike, M., McArthur, J. (1992). Effect of chronic substance abuse on the neuropsychological performance of intravenous drug users with a high prevalence of HIV-1 seropositivity. American Journal of Epidemiology, 136(11), 13381348.CrossRefGoogle ScholarPubMed
Concha, M., Selnes, O.A., Vlahov, D., Nance-Sproson, T., Updike, M., Royal, W., McArthur, J.C. (1997). Comparison of neuropsychological performance between AIDS-free injecting drug users and homosexual men. Neuroepidemiology, 16(2), 7885.CrossRefGoogle ScholarPubMed
Darke, S., McDonald, S., Kaye, S., Torok, M. (2012). Comparative patterns of cognitive performance amongst opioid maintenance patients, abstinent opioid users and non-opioid users. Drug and Alcohol Dependence, 126, 309315.CrossRefGoogle ScholarPubMed
Del Pesce, M., Franciolini, B., Censori, B., Bartolini, M., Ancarani, F., Petrelli, E., Provinciali, L. (1993). Cognitive behavior in asymptomatic (CDC stage II and III) HIV--seropositive intravenous drug users (IVDUs). Italian Journal of Neurological Sciences, 4(9), 619625.CrossRefGoogle Scholar
Devlin, K.N., Gongvatana, A., Clark, U.S., Chasman, J.D., Westbrook, M.L., Tashima, K.T., Cohen, R.A. (2012). Neurocognitive effects of HIV, hepatitis C, and substance use history. Journal of The International Neuropsychological Society, 18(1), 6878.CrossRefGoogle ScholarPubMed
Durvasula, R., Myers, H., Satz, P., Miller, E., Morgenstern, H., Richardson, M., Forney, D. (2000). HIV-1, cocaine, and neuropsychological performance in African American men. Journal of the International Neuropsychological Society, 6(3), 322335.CrossRefGoogle ScholarPubMed
Fellows, R.P., Byrd, D.A., Elliott, K., Robinson-Papp, J., Rivera Mindt, M., Morgello, S. (2012). Distal sensory polyneuropathy is associated with neuropsychological test performance among persons with HIV. Journal of the International Neuropsychological Society, 19, 110.Google Scholar
Fernández-Serrano, M., Pérez-García, M., Río-Valle, J., Verdejo-García, A. (2010). Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. Journal of Psychopharmacology, 24(9), 13171332.CrossRefGoogle ScholarPubMed
Friedman, H., Newton, C., Klein, T. (2003). Microbial infections, immunomodulation, and drugs of abuse. Clinical Microbiology Reviews, 16(2), 209219.CrossRefGoogle ScholarPubMed
Garavan, H., Kaufman, J., Hester, R. (2008). Acute effects of cocaine on the neurobiology of cognitive control. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1507), 32673276.CrossRefGoogle ScholarPubMed
Gonzalez, R., Cherner, M. (2008). Co-factors in HIV neurobehavioural disturbances: Substance abuse, hepatitis C and aging. International Review of Psychiatry, 20(1), 4960.CrossRefGoogle ScholarPubMed
Gruber, S., Silveri, M., Yurgelun-Todd, D. (2007). Neuropsychological consequences of opiate use. Neuropsychology Review, 17(3), 299315.CrossRefGoogle ScholarPubMed
Hasin, D., Trautman, K., Miele, G., Samet, S., Smith, M., Endicott, J. (1996). Psychiatric Research Interview for Substance and Mental Disorders (PRISM): Reliability for substance abusers. The American Journal of Psychiatry, 153(9), 11951201.Google ScholarPubMed
Heaton, R.K., Clifford, D.B., Franklin, D.R., Woods, S.P., Ake, C.C., Vaida, F.F., Grant, I.I. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: Charter study. Neurology, 75(23), 20872096.CrossRefGoogle ScholarPubMed
Janssen, R.S., Cornblath, D.R., Epstein, L.G., Foa, R.P. (1991). Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a working group of the American Academy of Neurology AIDS task force. Neurology, 41, 778785.Google Scholar
Kalechstein, A., van Gorp, W. (2007) (Eds.). Neuropsychology and substance use: State of the art and future directions. Philadelphia, PA: Taylor & Francis.Google Scholar
Koike, H., Iijima, M., Sugiura, M., Mori, K., Hattori, N., Ito, H., Sobue, G. (2003). Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Annals of Neurology, 54(1), 1929.CrossRefGoogle ScholarPubMed
Levine, A.J., Hardy, D.J., Miller, E., Castellon, S.A., Longshore, D., Hinkin, C.H. (2006). The effect of recent stimulant use on sustained attention in HIV-infected adults. Journal of Clinical and Experimental Neuropsychology, 28(1), 2942.CrossRefGoogle ScholarPubMed
Liu, H., Hao, Y., Kaneko, Y., Ouyang, X., Zhang, Y., Xu, L., Liu, Z. (2009). Frontal and cingulate gray matter volume reduction in heroin dependence: Optimized voxel-based morphometry. Psychiatry and Clinical Neurosciences, 63(4), 563568.CrossRefGoogle ScholarPubMed
Llorente, A.M., Miller, E.N., D'Elia, L.F., Selnes, O.A., Wesch, J., Becker, J.T., Satz, P. (1998). Slowed information processing in HIV-1 disease. Journal of Clinical and Experimental Neuropsychology, 20(1), 6072.CrossRefGoogle ScholarPubMed
Lundqvist, T. (2010). Imaging cognitive deficits in drug abuse. Current Topics in Behavioral Neurosciences, 3, 247275.CrossRefGoogle ScholarPubMed
Manly, J.J., Byrd, D., Touradji, P., Sanchez, D., Stern, Y. (2004). Literacy and cognitive change among ethnically diverse elders. International Journal of Psychology, 39(1), 4760.CrossRefGoogle Scholar
Manly, J.J., Jacobs, D.M., Sano, M., Bell, K., Merchant, C.A., Small, S.A.Stern, Y. (1998). Cognitive test performance among nondemented elderly African Americans and Whites. Neurology, 50, 12381245.CrossRefGoogle ScholarPubMed
Manly, J.J., Jacobs, D., Touradji, P., Small, S., Stern, Y. (2002). Reading level attenuates differences in neuropsychological test performance between African American and White elders. Journal of the International Neuropsychological Society, 8, 341348.CrossRefGoogle ScholarPubMed
Martin, E.M., Pitrak, D.L., Rains, N., Grbesic, S., Pursell, K., Nunnally, G., Bechara, A. (2003). Delayed nonmatch-to-sample performance in HIV-seropositive and HIV-seronegative polydrug abusers. Neuropsychology, 17(2), 283288.CrossRefGoogle ScholarPubMed
Martin-Thormeyer, E., Paul, R. (2009). Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: Neurocognitive and neuroimaging features. Neuropsychology Review, 19(2), 215231.CrossRefGoogle ScholarPubMed
Mintzer, M.Z., Stitzer, M.L. (2002). Cognitive impairment in methadone maintenance patients. Drug and Alcohol Dependence, 67(1), 4151.CrossRefGoogle ScholarPubMed
Mintzer, M.Z., Copersino, M.L., Stitzer, M.L. (2005). Opioid abuse and cognitive performance. Drug and Alcohol Dependence, 78(2), 225230.CrossRefGoogle ScholarPubMed
Morgello, S., Estanislao, L., Simpson, D., Geraci, A., DiRocco, A., Gerits, P., Sharp, V. (2004). HIV-associated distal sensory polyneuropathy in the era of highly active antiretroviral therapy: The Manhattan HIV Brain Bank. Archives of Neurology, 61(4), 546551.CrossRefGoogle ScholarPubMed
National Institute on Drug Abuse (NIDA) (2011, July). NIDA infofacts: Drug abuse and the link to HIV/AIDS and other infectious diseases. Retrieved from NIDA Website: http://www.drugabuse.gov/sites/default/files/drugaids.pdf.Google Scholar
Navia, B., Jordan, B., Price, R. (1986). The AIDS dementia complex: I. Clinical features. Annals of Neurology, 19(6), 517524.CrossRefGoogle ScholarPubMed
Neiman, J., Haapaniemi, H., Hillbom, M. (2000). Neurological complications of drug abuse: Pathophysiological mechanisms. European Journal of Neurology, 7(6), 595606.CrossRefGoogle ScholarPubMed
Pace-Schott, E., Morgan, P.T., Malison, R.T., Hart, C.L., Edgar, C., Walker, M., Stickgold, R. (2008). Cocaine users differ from normals on cognitive tasks which show poorer performance during drug abstinence. The American Journal of Drug and Alcohol Abuse, 34, 109121.CrossRefGoogle ScholarPubMed
Poon, H.F., Abdullah, L., Mullan, M.A., Crawford, F.C. (2007). Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochemistry International, 50, 6973.CrossRefGoogle ScholarPubMed
Reger, M., Welsh, R., Razani, J., Martin, D.J., Boone, K.B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8, 410424.CrossRefGoogle ScholarPubMed
Reinhard, M.J., Hinkin, C.H., Barclay, T.R., Levine, A.J., Marion, S., Castellon, S.A., Myers, H. (2007). Discrepancies between self-report and objective measures for stimulant drug use in HIV: Cognitive medication adherence and psychological correlates. Addictive Behaviors, 32(12), 27272736.CrossRefGoogle ScholarPubMed
Richter, R., Pearson, J., Bruun, B., Challenor, Y., Brust, J., Baden, M. (1973). Neurological complications of addiction to heroin. Bulletin of the New York Academy of Medicine, 49(1), 321.Google ScholarPubMed
Rippeth, J., Heaton, R., Carey, C., Marcotte, T., Moore, D., Gonzalez, R., Grant, I. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 114.CrossRefGoogle ScholarPubMed
Robinson-Papp, J., Byrd, D., Rivera Mindt, M., Oden, N.L., Cohen, G., Simpson, D.M., Morgello, S.for the Manhattan HIV Brain Bank. (2008). Motor function and HIV-associated cognitive impairment in a HAART era cohort. Archives of Neurology, 65(8), 10961101.CrossRefGoogle Scholar
Ryan, E., Baird, R., Mindt, M., Byrd, D., Monzones, J., Bank, S. (2005). Neuropsychological impairment in racial/ethnic minorities with HIV infection and low literacy levels: Effects of education and reading level in participant characterization. Journal of the International Neuropsychological Society, 11(7), 889898.CrossRefGoogle ScholarPubMed
Schlaepfer, T.E., Lancaster, E., Heidbreder, R., Strain, E.C., Kosel, M., Fisch, H.U., Pearlson, G.D. (2006). Decreased frontal white-matter volume in chronic substance abuse. International Journal of Neuropsychopharmacology, 9, 147153.CrossRefGoogle ScholarPubMed
Scott, J., Woods, S., Matt, G., Meyer, R., Heaton, R., Atkinson, J., Grant, I. (2007). Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychology Review, 17(3), 275297.CrossRefGoogle ScholarPubMed
Selnes, O., Galai, N., McArthur, J., Cohn, S., Royal, W., Esposito, D., Vlahov, D. (1997). HIV infection and cognition in intravenous drug users: Long-term follow-up. Neurology, 48(1), 223230.CrossRefGoogle ScholarPubMed
Soyka, M., Lieb, M., Kagerer, S., Zingg, C., Koller, G., Lehnert, P., Hennig-Fast, K. (2008). Cognitive functioning during methadone and buprenorphine treatment: Results of a randomized clinical trial. Journal of Clinical Psychopharmacology, 28(6), 699703.CrossRefGoogle ScholarPubMed
Venkatesan, A., Nath, A., Ming, G.I., Song, H. (2007). Adult hippocampal neurogenesis: Regulation by HIV and drugs of abuse. Cellular and Molecular Life Sciences, 64(16), 21202132.CrossRefGoogle ScholarPubMed
Verdejo, A., Toribio, Y., Orozco, C., Puente, K., Pérez-García, M. (2005). Neuropsychological functioning in methadone maintenance patients versus abstinent heroin abusers. Drug and Alcohol Dependence, 78(3), 283288.CrossRefGoogle ScholarPubMed
Yuan, Y., Zhu, Z., Shi, J., Zou, Z., Yuan, F., Liu, Y., Weng, X. (2009). Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain and Cognition, 71(3), 223228.CrossRefGoogle ScholarPubMed
Wiegmann, D.A., Stanny, R.R., McKay, D.L., Neri, D.F., McCardie, A.H. (1996). Methamphetamine effects on cognitive processing during extended wakefulness. International Journal of Aviation Psychology, 6(4), 379397.CrossRefGoogle ScholarPubMed
Welch, K.A. (2011). Neurological complications of alcohol and misuse of drugs. Practical Neurology, 11, 206219.CrossRefGoogle ScholarPubMed
Woods, S., Rippeth, J., Frol, A., Levy, J., Ryan, E., Soukup, V., Heaton, R. (2004). Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. Journal of Clinical and Experimental Neuropsychology, 26(6), 759778.CrossRefGoogle ScholarPubMed
Wojna, V., Nath, A. (2006). Challenges to the diagnosis and management of HIV dementia. The AIDS Reader, 16(11), 615616.Google Scholar
Yeung, M., Bhalla, A., Birns, J. (2011). Recreational drug misuse and stroke. Current Drug Abuse Reviews, 4(4), 286291.CrossRefGoogle ScholarPubMed