Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T10:25:01.331Z Has data issue: false hasContentIssue false

The Multilingual Naming Test (MINT) as a Measure of Picture Naming Ability in Alzheimer’s Disease

Published online by Cambridge University Press:  28 June 2019

Alena Stasenko
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, USA
Diane M. Jacobs
Affiliation:
Department of Neurosciences, Shiley-Marcos Alzheimer’s Disease Research Center, University of California, 9444 Medical Center Dr #1-100, La Jolla, CA 92037, USA
David P. Salmon
Affiliation:
Department of Neurosciences, Shiley-Marcos Alzheimer’s Disease Research Center, University of California, 9444 Medical Center Dr #1-100, La Jolla, CA 92037, USA
Tamar H. Gollan*
Affiliation:
Department of Psychiatry, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
*
*Correspondence and reprint requests to: Tamar H. Gollan, Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA. E-mail: tgollan@ucsd.edu

Abstract

Objective:

The present study investigated the ability of the Multilingual Naming Test (MINT), a picture naming test recently added to the National Alzheimer’s Coordinating Center’s (NACC) Uniform Data Set neuropsychological test battery, to detect naming impairment (i.e., dysnomia) across stages of Alzheimer’s disease (AD).

Method:

Data from the initial administration of the MINT were obtained on NACC participants who were cognitively normal (N = 3,981) or diagnosed with mild cognitive impairment (N = 852) or dementia (N = 1,148) with presumed etiology of AD. Dementia severity was rated using the Clinical Dementia Rating (CDR) scale.

Results:

Cross-sectional multiple regression analyses revealed significant effects of diagnostic group, sex, education, age, and race on naming scores. Planned comparisons collapsing across age and education groups revealed significant group differences in naming scores across levels of dementia severity. ROC curve analyses showed good diagnostic accuracy of MINT scores for distinguishing cognitively normal controls from AD dementia, but not from MCI. Within the cognitively normal group, there was a robust interaction between age and education such that naming scores exhibited the most precipitous drop across age groups for the least educated participants. Additionally, education effects were stronger in African-Americans than in Whites (a race-by-education interaction), and race effects were stronger in older than in younger age groups (a race-by-age interaction).

Conclusions:

The MINT successfully detects naming deficits at different levels of cognitive impairment in patients with MCI or AD dementia, but comparison to age, sex, race, and education-corrected norms to determine impairment is essential.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiken-Morgan, A.T., Gamaldo, A.A., Sims, R.C., Allaire, J.C., & Whitfield, K.E. (2015). Education desegregation and cognitive change in African American older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70, 348356.CrossRefGoogle ScholarPubMed
Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., & Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270279.CrossRefGoogle Scholar
Albert, M.S., Heller, H.S., & Milberg, W. (1988). Changes in naming ability with age. Psychology and Aging, 3, 173178.CrossRefGoogle ScholarPubMed
Anderson, J.D. (1988). The education of Blacks in the South, 1860–1935. Chapel Hill: University of North Carolina Press.CrossRefGoogle Scholar
Ashaie, S., & Obler, L. (2014). Effect of age, education, and bilingualism on confrontation naming in older illiterate and low-educated populations. Behavioural Neurology, 2014, 110.CrossRefGoogle ScholarPubMed
Au, R., Joung, P., Nicholas, M., Obler, L.K., Kass, R., & Albert, M.L. (1995). Naming ability across the adult life span. Aging and Cognition, 2, 300311.Google Scholar
Balota, D.A., & Duchek, J.M. (1991). Semantic priming effects, lexical repetition effects, and contextual disambiguation effects in healthy aged individuals and individuals with senile dementia of the Alzheimer type. Brain and Language, 40, 181201.CrossRefGoogle ScholarPubMed
Balthazar, M.L.F., Martinelli, J.E., Cendes, F., & Damasceno, B.P. (2007). Lexical semantic memory in amnestic mild cognitive impairment and mild Alzheimer’s disease. Arquivos De Neuro-Psiquiatria, 65, 619622.CrossRefGoogle ScholarPubMed
Barbeau, E.J., Didic, M., Joubert, S., Guedj, E., Koric, L., Felician, O., Ranjeva, J.P., Cozzone, P., & Ceccaldi, M. (2012). Extent and neural basis of semantic memory impairment in mild cognitive impairment. Journal of Alzheimer’s Disease, 28, 823837.CrossRefGoogle ScholarPubMed
Barresi, B.A., Nicholas, M., Tabor Connor, L., Obler, L.K., & Albert, M.L. (2000). Semantic degradation and lexical access in age-related naming failures. Aging, Neuropsychology, and Cognition, 7, 169178.CrossRefGoogle Scholar
Burke, D.M., & Shafto, M.A. (2004). Aging and language production. Current Directions in Psychological Science, 13, 2124.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., & Barbarotto, R. (1999). Sex affects word retrieval of certain categories in semantic fluency tasks. Cortex, 35, 273278.CrossRefGoogle ScholarPubMed
Caamaño-Isorna, F., Corral, M., Montes-Martínez, A., & Takkouche, B. (2006). Education and dementia: a meta-analytic study. Neuroepidemiology, 26, 226232.CrossRefGoogle ScholarPubMed
Connor, L.T., Spiro, A., Obler, L.K., & Albert, M.L. (2004). Change in object naming ability during adulthood. The Journals of Gerontology, 59, 203209.CrossRefGoogle ScholarPubMed
Edmonds, E.C., Delano-Wood, L., Clark, L.R., Jak, A.J., Nation, D.A., McDonald, C.R., Libon, D.J., Au, R., Galasko, D., Salmon, D.P., Bondi, M.W., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11, 415424.CrossRefGoogle ScholarPubMed
Fan, J., Upadhye, S., & Worster, A. (2006). Understanding receiver operating characteristic (ROC) curves. CJEM, 8, 1920.CrossRefGoogle ScholarPubMed
Fastenau, P.S., Denburg, N.L., & Mauer, B.A. (1998). Parallel short forms for the Boston Naming Test: psychometric properties and norms for older adults. Journal of Clinical and Experimental Neuropsychology, 20, 828834.CrossRefGoogle ScholarPubMed
Feyereisen, P. (1997). A meta-analytic procedure shows an age-related decline in picture naming: comments on Goulet, Ska, and Kahn (1994). Journal of Speech, Language, and Hearing Research, 40, 13281333.CrossRefGoogle Scholar
Fratiglioni, L., & Wang, H.-X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer’s Disease, 12, 1122.CrossRefGoogle ScholarPubMed
Garrard, P., Lambon Ralph, M.A., Patterson, K., Pratt, K.H., & Hodges, J.R. (2005). Semantic feature knowledge and picture naming in dementia of Alzheimer’s type: a new approach. Brain and Language, 93, 7994.CrossRefGoogle ScholarPubMed
Gollan, T.H., Fennema-Notestine, C., Montoya, R.I., & Jernigan, T.L. (2007). The bilingual effect on Boston Naming Test performance. Journal of the International Neuropsychological Society, 13, 197208.Google ScholarPubMed
Gollan, T.H., Weissberger, G.H., Runnqvist, E., Montoya, R.I., & Cera, C.M. (2012). Self-ratings of spoken language dominance: A Multi-Lingual Naming Test (MINT) and preliminary norms for young and aging Spanish-English bilinguals. Bilingualism, 15, 594615.CrossRefGoogle Scholar
Goulet, P., Ska, B., & Kahn, H.J. (1994). Is there a decline in picture naming with advancing age? Journal of Speech and Hearing Research, 37, 629644.CrossRefGoogle Scholar
Hall, J.R., Vo, H.T., Johnson, L.A., Wiechmann, A., & O’Bryant, S.E. (2012). Boston Naming Test: Sex differences in older adults with and without Alzheimer’s dementia. Psychology, 3, 485488.CrossRefGoogle Scholar
Hashimoto, N., Johnson, B., & Peterson, A. (2016). The effects of thematic relations on picture naming abilities across the lifespan. Neuropsychology, Development, and Cognition, 23, 499512.CrossRefGoogle ScholarPubMed
Hodges, J.R., Salmon, D.P., & Butters, N. (1991). The nature of the naming deficit in Alzheimer’s and Huntington’s disease. Brain, 114, 15471558.CrossRefGoogle ScholarPubMed
Hodges, J.R., Salmon, D.P., & Butters, N. (1992). Semantic memory impairment in Alzheimer’s disease: Failure of access or degraded knowledge? Neuropsychologia, 30, 301314.CrossRefGoogle ScholarPubMed
Huff, F.J., Corkin, S., & Growdon, J.H. (1986). Semantic impairment and anomia in Alzheimer’s disease. Brain and Language, 28, 235249.CrossRefGoogle ScholarPubMed
Hyman, B.T., Van Hoesen, G.W., Damasio, A.R., & Barnes, C.L. (1984). Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science, 225, 11681170.CrossRefGoogle ScholarPubMed
Ivanova, I., Salmon, D.P., & Gollan, T.H. (2013). The Multilingual Naming Test in Alzheimer’s disease: Clues to the origin of naming impairments. Journal of the International Neuropsychological Society, 19, 272283.CrossRefGoogle ScholarPubMed
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., & Petersen, R.C. (1995). Neuropsychological tests’ norms above age 55: COWAT, BNT, MAE token, WRAT-R reading, AMNART, Stroop, TMT, JLO. The Clinical Neuropsychologist, 10, 262278.CrossRefGoogle Scholar
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J.L., Montine, T., Phelps, C., Rankin, K.P., Rowe, C.C., Scheltens, P., Siemers, E., Snyder, H.M., Sperling, R., & Contributors. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 14, 535562.CrossRefGoogle Scholar
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Feldman, H.H., Frisoni, G.B., Hampel, H., Jagust, W.J., Johnson, K.A., Knopman, D.S., Petersen, R.C., Scheltens, P., Sperling, R.A., & Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87, 539547.CrossRefGoogle ScholarPubMed
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1983). The Boston naming test (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
Kavé, G., Knafo, A., & Gilboa, A. (2010). The rise and fall of word retrieval across the lifespan. Psychology and Aging, 25, 719724.CrossRefGoogle ScholarPubMed
LaBarge, E., Edwards, D., & Knesevich, J.W. (1986). Performance of normal elderly on the Boston Naming Test. Brain and Language, 27, 380384.CrossRefGoogle ScholarPubMed
Laiacona, M., Barbarotto, R., & Capitani, E. (1998). Semantic category dissociations in naming: is there a sex effect in Alzheimer’s disease? Neuropsychologia, 36, 407419.CrossRefGoogle Scholar
Laws, K.R. (1999). Sex affects naming latencies for living and nonliving things: Implications for familiarity. Cortex, 35, 729733.CrossRefGoogle ScholarPubMed
Lukatela, K., Malloy, P., Jenkins, M., & Cohen, R. (1998). The naming deficit in early Alzheimer’s and vascular dementia. Neuropsychology, 12, 565572.CrossRefGoogle ScholarPubMed
Mackay, A.I., Connor, L.T., Albert, M.L., & Obler, L.K. (2002). Noun and verb retrieval in healthy aging. Journal of the International Neuropsychological Society, 8, 764770.CrossRefGoogle ScholarPubMed
Manly, J. (2005). Advantages and disadvantages of separate norms for African Americans. The Clinical Neuropsychologist, 19, 270275.CrossRefGoogle ScholarPubMed
Manly, J.J., Byrd, D.A., Touradji, P., & Stern, Y. (2004). Acculturation, reading level, and neuropsychological test performance among African American elders. Applied Neuropsychology, 11, 3746.CrossRefGoogle ScholarPubMed
Manly, J.J., Miller, S.W., Heaton, R.K., Byrd, D., Reilly, J., Velasquez, R.J., Saccuzzo, D.P., & Grant, I. (1998). The effect of African-American acculturation on neuropsychological test performance in normal and HIV-positive individuals. The HIV Neurobehavioral Research Center (HNRC) Group. Journal of the International Neuropsychological Society: JINS, 4(3), 291302.CrossRefGoogle ScholarPubMed
Manly, J.J., Jacobs, D.M., Touradji, P., Small, S.A., & Stern, Y. (2002). Reading level attenuates differences in neuropsychological test performance between African American and White elders. Journal of the International Neuropsychological Society, 8, 341348.CrossRefGoogle ScholarPubMed
McKenna, P., & Parry, R. (1994). Category specificity in the naming of natural and man-made objects: Normative data from adults and children. Neuropsychological Rehabilitation, 4, 255281.CrossRefGoogle Scholar
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., & Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 263269.CrossRefGoogle Scholar
Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the Cognitive Reserve Hypothesis: A systematic review with meta-analyses and qualitative analyses. PLoS ONE, 7, e38268.CrossRefGoogle Scholar
Mitrushina, M., & Satz, P. (1995). Repeated testing of normal elderly with the Boston Naming Test. Aging, 7, 123127.Google ScholarPubMed
Monsell, S.E., Dodge, H.H., Zhou, X.-H., Bu, Y., Besser, L.M., Mock, C., Hawes, S.E., Kukull, W.A., Weintraub, S., & Neuropsychology Work Group Advisory to the Clinical Task Force. (2016). Results from the NACC Uniform Data Set Neuropsychological Battery crosswalk study. Alzheimer Disease and Associated Disorders, 30, 134139.CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.CrossRefGoogle ScholarPubMed
Mortimer, J.A. (1997). Brain reserve and the clinical expression of Alzheimer’s disease. Geriatrics, 52, S50S53.Google ScholarPubMed
Mulatti, C., Calia, C., De Caro, M.F., & Della Sala, S. (2014). The cumulative semantic interference effect in normal and pathological ageing. Neuropsychologia, 65, 125130.CrossRefGoogle ScholarPubMed
Nicholas, M., Obler, L., Albert, M., & Goodglass, H. (1985). Lexical retrieval in healthy aging. Cortex, 21, 595606.CrossRefGoogle ScholarPubMed
Prins, N.D., van Dijk, E.J., den Heijer, T., Vermeer, S.E., Jolles, J., Koudstaal, P.J., & Hofman, A. Breteler, M.M. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128, 20342041.CrossRefGoogle ScholarPubMed
Randolph, C., Lansing, A.E., Ivnik, R.J., Cullum, C.M., & Hermann, B.P. (1999). Determinants of confrontation naming performance. Archives of Clinical Neuropsychology, 14, 489496.CrossRefGoogle ScholarPubMed
R Core Team (2016). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Rizio, A.A., Moyer, K.J., & Diaz, M.T. (2017). Neural evidence for phonologically based language production deficits in older adults: An fMRI investigation of age-related differences in picture-word interference. Brain and Behavior, 7, e00660.CrossRefGoogle ScholarPubMed
Roberts, R.J, & Hamsher, K.D. (1984). Effects of minority status on facial recognition and naming performance. Journal of Clinical Psychology, 40, 539545.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Rogers, T.T., Ivanoiu, A., Patterson, K., & Hodges, J.R. (2006). Semantic memory in Alzheimer’s disease and the frontotemporal dementias: a longitudinal study of 236 patients. Neuropsychology, 20, 319335.CrossRefGoogle ScholarPubMed
Schmidt, A.F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of Clinical Epidemiology, 98, 146151.CrossRefGoogle ScholarPubMed
Sheng, L., Lu, Y., & Gollan, T.H. (2014). Assesing language dominance in Mandarin-English bilinguals: Convergence and divergence between subjective and objective measures. Bilingualism: Language and Cognition, 17, 364383.CrossRefGoogle Scholar
Sisco, S., Gross, A.L., Shih, R.A., Sachs, B.C., Glymour, M.M., Bangen, K.J., Benitez, A., Skinner, J., Schneider, B.C., & Manly, J.J. (2015). The role of early-life educational quality and literacy in explaining racial disparities in cognition in late life. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 70, 557567.CrossRefGoogle ScholarPubMed
Sliwinski, M., Lipton, R.B., Buschke, H., & Stewart, W. (1996). The effects of preclinical dementia on estimates of normal cognitive functioning in aging. The Journals of Gerontology, 51, 217225.CrossRefGoogle Scholar
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, C.R. Jr., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster, M.V., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280292.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448460.CrossRefGoogle ScholarPubMed
Tomoschuk, B., Ferreira, V.S., & Gollan, T.H. (2018). When a seven is not a seven: Self-ratings of bilingual language proficiency differ between and within languagepopulations. Bilingualism: Language and Cognition, 22, 516536.CrossRefGoogle Scholar
Uttl, B. (2005). Measurement of Individual Differences: Lessons From Memory Assessment in Research and Clinical Practice. Psychological Science, 16, 460467.Google ScholarPubMed
Van Gorp, W.G., Satz, P., Kiersch, M.E., & Henry, R. (1986). Normative data on the Boston Naming Test for a group of normal older adults. Journal of Clinical and Experimental Neuropsychology, 8, 702705.CrossRefGoogle ScholarPubMed
Weintraub, S., Besser, L., Dodge, H.H., Teylan, M., Ferris, S., Goldstein, F.C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.H., Shirk, S.D., Atri, A., Kukull, W.A., Phelps, C., & Morris, J.C. (2018). Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32, 1017.CrossRefGoogle Scholar
Welch, L.W., Doineau, D., Johnson, S., & King, D. (1996). Educational and sex normative data for the Boston Naming Test in a group of older adults. Brain and Language, 53, 260266.CrossRefGoogle Scholar
Welsh, K.A., Fillenbaum, G., Wilkinson, W., Heyman, A., Mohs, R.C., Stern, Y., Harrell, L., Edland, S.D., & Beekly, D. (1995). Neuropsychological test performance in African-American and white patients with Alzheimer’s disease. Neurology, 45, 22072211.CrossRefGoogle ScholarPubMed
Willers, I.F., Feldman, M.L., & Allegri, R.F. (2008). Subclinical naming errors in mild cognitive impairment: A semantic deficit? Dementia & Neuropsychologia, 2, 217222.CrossRefGoogle ScholarPubMed
Williams, B.W., Mack, W., & Henderson, V.W. (1989). Boston Naming Test in Alzheimer’s disease. Neuropsychologia, 27, 10731079.CrossRefGoogle ScholarPubMed
Zec, R., Markwell, S., Burkett, N., & Larsen, D. (2005). A longitudinal study of confrontation naming in the “normal” elderly. Journal of the International Neuropsychological Society, 11, 716726.CrossRefGoogle ScholarPubMed